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targeting CSCs which may hold promise for developing therapies for 
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© 2015 ACT. All rights reserved.

Key words: Neoplastic Stem Cells; Cancer Stem Cells; Metastasis; 
Antineoplastic Agents

Banerji A, Majumder A, Chatterjee A. Stem Cells and Cancer: the 
Cancer Stem Cell (CSC) Model. Journal of Tumor 2015; 3(3): 320-
355 Available from: URL: http://www.ghrnet.org/index.php/JT/
article/view/1504

INTRODUCTION
Stem cells comprise a variety of unspecialized cells characterized by 
an extensive capacity for self-renewal and an ability to differentiate 
into a variety of cell types[1,2,3]. Stem cells differ from each other both 
in their intrinsic capability to self-renew and to differentiate. They are 
usually classified based on potency or origin. In mammals, stem cells 
are primarily divided into embryonic stem cells (ESCs) which are 
isolated from the inner cell mass (ICM) of blastocysts, adult (somatic) 
stem cells, which are found in various tissues and cord stem cells 
derived from the umbilical cord[3].
    Cancer covers a plethora of conditions characterized by 
uncontrolled cellular proliferation. The causes of cancer are many 
and varied and include genetic predisposition, environmental 
influences, infectious agents and ageing. These can transform normal 
cells into cancerous cells by hampering a wide range of regulatory 
pathways[4]. Stem cells and cancerous cells appear to have a number 
of common characteristics including rapid proliferation, the ability to 
express telomerase and the possession of an indefinite replicative life 
span[2,5]. The possible involvement of stem cells in cancer generation 
and tumour growth and metastasis has been discussed by scientists 
for many years. However, only recently, following some success 
in isolation of malignant stem cells and a more comprehensive 
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ABSTRACT 

Cancer stem cells (CSCs) can be defined as cells within the tumour 
which are tumour-initiating and which possess the capacity to 
self renew and generate the heterogenous lineages of cancer cells 
that comprise the tumour. They are functionally characterized 
by their abilities to self-renew, differentiate and form tumours in 
immunocompromised mice. Only a certain subpopulation of cells 
within the tumour possesses these abilities. CSCs have been isolated 
from a variety of cancers and are believed to play pivotal roles in 
tumour initiation, tumour progression and metastasis as well as in 
tumour recurrence. CSCs may arise from normal stem cells in tissue, 
which undergo a loss of regulation of proliferation; alternatively, 
they can arise from normal somatic cells which acquire stem cell 
like characteristics. At the molecular level, intracellular signalling 
pathways involved in normal stem cell self-renewal and proliferation 
often show dysregulation or aberrant activation in CSCs. Inherent 
mechanisms present in CSCs appear to render them comparatively 
more resistant to conventional anti-cancer approaches like 
chemotherapy and radiotherapy. Thus, for maximal effectiveness, 
anti-cancer therapies would probably need to target critical molecular 
pathways essential for CSC self-renewal, proliferation and survival. 
This review provides an overview of CSCs, their roles in various 
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understanding of stem cell behaviour, has serious attention been 
given to the role of stem cells in cancer and the consequences which 
arise from retention of stem cell behaviour in malignancy[1,6-9].
    Cancer stem cells (CSCs) can be defined as cells within the tumour 
which are tumour-initiating and which possess the capacity to self 
renew and generate the heterogenous lineages of cancer cells that 
comprise the tumour[7,10]. CSCs are functionally defined by their 
abilities to self-renew, differentiate (i.e. produce cells with non-stem 
cell characteristics) and form tumours in immunocompromised mice[6]. 
A number of observations have indicated that only a limited subset of 
cells within the tumour, the CSCs, can initiate and promote tumour 
formation. Only 1-4% of lymphoma cells were found to form colonies 
in vitro or initiate carcinomas in mouse spleen; thus, not all cells within 
the tumour were tumour initiating[11]. The cells from various types 
of acute myeloid leukaemia (AML) which could lead to initiation of 
haematopoietic malignancies upon injection into severe combined 
immunodeficiency (SCID) mice were found to be CD34++CD38- 
regardless of the heterogeneity in maturation of blasts. This 
subpopulation of cells also possessed the abilities of self-renewal and 
proliferation[12]. Experiments demonstrating that CD44+CD24−/lowLin− 
cells from breast cancer patients had significantly greater tumour 
forming ability when injected into SCID mice first indicated the 
presence of CSCs in solid tumours. This tumorigenic subpopulation 
could be serially passaged and would generate new tumours 
containing CD44+CD24−/lowLin− tumorigenic cells as well as the 
phenotypically diverse populations of non-tumorigenic cells present 
in the initial tumour[13]. CSCs have subsequently been isolated from 
a number of other solid tumours including cancers of the colon[14], 
brain[15], ovary[16], prostate[17], lung[18] and melanomas[19]. A fraction 
of cells with stem cell properties have been shown to be present 
in established cell lines like HeLa (cervical cancer), C-6 (glioma), 
MCF-7 (breast cancer) and A549 (non-small cell lung cancer)[2,20].
    This review seeks to provide an overview of CSCs and their roles 
in various cancers and discusses their probable origins, molecular 
pathways involved in their functions and some possible methods 
for targeting and removal of CSCs which may hold promise for 
developing therapies for alleviation of cancer.

THE CANCER STEM CELL (CSC) HYPOTHESIS
Two models have been proposed to explain why only a limited 
number of cells within a tumour are capable of initiating and 
propagating tumour growth. The clonal evolution model (CE model) 
postulates that the cellular heterogeneity within a tumour is primarily 
caused by subclonal differences that result from genetic and 
epigenetic changes during cancer development. All tumour cells can 
contribute to tumour maintenance and any cell, having accumulated 
sufficient genetic changes, can potentially become invasive and cause 
metastasis or become resistant to therapies and cause recurrence. 
Stem or differentiated cell characteristics are thus phenotypes and 
may change over time[7,21,22].
    The cancer stem cell model (CSC model) states that a specific 
subset of tumour cells, the CSCs, play a pivotal role in tumour 
initiation, progression and recurrence (Figure 1). These CSCs 
can self-renew indefinitely and also differentiate, leading to the 
production of the various heterogeneous cell types which make up a 
tumour. However, the majority of these cell types lack the capacity 
for unlimited self-renewal and the ability to produce the varied cell 
populations present in the tumour. Thus, the heterogeneity of the 
cells within a tumour result from asymmetric division of CSCs and 
tumours are highly hierarchical with a self-renewing population 
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of CSCs at the top of the hierarchy[7,9,21,23]. During this process, 
metastasis and malignancy may occur. It has been suggested that the 
lower the degree of CSC differentiation, the more malignant is the 
tumour initiated by CSCs[24,25].
    Although much of the currently available evidence appears to 
support the CSC model, certain findings seems to indicate that 
the CE model cannot be completely rejected. In metastatic sites, 
cell subpopulations with the capacity for self-renewal appear to 
display a cell surface marker profile different from the CSC that 
caused the origin of the primary tumour[26]. Studies on BCR-ABL1 
lymphoblastic leukaemia indicate that many clinical samples contain 
a number of genetically distinct leukaemia-initiating subclones, 
linking clonal diversity with leukaemia-initiating-cell function[27]. 
On the other hand, in addition to the previously mentioned evidence, 
clinical studies of breast cancer indicate that, despite patients 
having thousands of single disseminated cancer cells circulating 
in their bloodstream, only a small percentage of cells ultimately 
form macroscopic metastases and secondary tumours produced by 
metastasis often possess heterogeneity similar to the primary tumour. 
Such heterogeneity could arise as a result of patterns of regeneration 
of CSCs[21,28]. A possible explanation, which would combine the 
hypothesis of both models, could be that while CSCs play important 
roles in tumour initiation and progression, they might undergo clonal 
evolution over time (Figure 2).

Figure 2 Clonal evolution of CSCs within a tumour. Mutations can cause 
the formation of a separate subclone of CSCs (shown in dark grey with 
vertical stripes) which are phenotypically different from the CSC which 
originally led to tumour initiation (shown in grey). These mutated CSC 
subclones are more aggressive in promoting tumour growth, metastasis 
and formation of secondary tumours. The various heterogeneous cell 
types which make up the tumour but lack the capacity for unlimited self-
renewal are shown in white.

Figure 1 The Cancer Stem Cell (CSC) model. CSCs (shown in grey) are a 
specific subset of tumour cells which play pivotal roles in tumour initiation 
and tumour development. CSCs can self-renew indefinitely as well as 
differentiate, leading to the production of the various heterogeneous 
cell types (shown in white) which make up the tumour; these cell types 
however, lack the capacity for unlimited self-renewal.



inducing stimuli and its suppression led to downregulation of CSC 
characteristics[6,37]. 

MOLECULAR PATHWAYS INVOLVED IN 
CSC FUNCTION 
Intracellular signalling pathways essential for normal stem cell self-
renewal and proliferation often show dysregulation or aberrant 
activation in CSCs. Molecular pathways involved in modulating 
stem cell self-renewal, like Wnt, Notch and phosphatase and tensin 
homolog (PTEN) are deregulated in a number of tumours. Other 
intracellular signalling pathways involving phosphatidylinositol-
3-kinase (PI3K)/ Akt, nuclear factor kappa beta (NF-kβ), mitogen 
activated protein kinase (MAPK) and phospholipase C (PLC)/ 
protein kinase C (PKC) may also be involved[10,38-40]. 
    The Wnt/ β-catenin pathway has been reported to be involved in 
modulation of CSC self-renewal in a number of cancers including 
leukaemia, melanoma, and breast, lung, and liver cancers[41-44]. 
Signalling through the Wnt pathway involves mediation by β-catenin 
which translocates to the nucleus and coordinates with lymphoid 
enhancer-binding factor (LEF) resulting in the activation of genes 
such as CCND1 (cyclin D1), c-Jun and c-Myc[41,45]. Notch signalling 
also plays an important role in activation of c-Myc, CCND1 and NF-
κB genes. Cross-talk between Notch and Wnt signalling pathways 
has been reported[41,46]. Signalling through the Hedgehog (Hh) 
pathway plays a crucial role in mammalian embryonic development 
and appears to be essential for maintenance of normal stem cells as 
well as CSCs in various human cancers including breast cancer[10,47]. 
NF-κB may also be involved in modulation of signalling through 
the Hh pathway by activation of sonic hedgehog[41,48]. Experiments 
indicate that CSCs from various cell lines including C-6 (glioma), 
MCF-7 (breast cancer) and A549 (non-small cell lung cancer) 
appear to proliferate efficiently via epidermal growth factor receptor 
(EGFR) mediated signalling cascades even in the absence of growth 
factors[20]. Tumour microenvironment may also play a role in 
regulation of CSC self renewal and proliferation[49] with CSCs being 
possibly able to reciprocally modulate their microenvironment via 
secretion of paracrine factors or via cell-cell contact. In human brain 
cancers, CD133+Nestin+ CSCs in medulloblastomas, glioblastomas 
and oligodendrogliomas have been found to interact closely with 
endothelial cells promoting angiogenesis[50].

DETECTION OF CSCS USING SPECIFIC 
MARKERS
The most widely used method for identifying CSCs is based on 
specific cellular markers, especially cell surface markers. These 
include CD133, CD24, CD44, epithelial-specific antigen (ESA) and 
aldehyde dehydrogenase1 (ALDH1)[10,13,29,51]. ALDH activity has been 
shown to enrich haematopoetic stem cells and cells with increased 
stem-like properties in solid malignancies[29,52]. Stem cells including 
hESCs and CSCs also express the octamer-4 (Oct-4) transcription 
factor while normal differentiated adult cells do not express Oct-
4[53]. However, the expression of many specific-CSC markers have 
been found to vary in a tissue specific and even in a tumour subtype-
specific manner[10,29]. For instance, the lung carcinoma cell marker 
SP-C has been reported to show variable expression in lung cancer 
spheres, possibly reflecting the phenotypic variability in human 
CSCs[54]. A number of CSC markers which have been reported in 
human cancers have been enumerated in Table 1.
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THE ORIGIN OF CSCS 
CSCs can presumably arise from a number of potential pathways. 
CSCs may arise from normal stem or progenitor cells present within 
the tissue which generate tumours due to genetic mutations or 
environmental alterations. Alternatively, CSCs may arise from normal 
somatic cells which manage to acquire stem cell like characteristics 
and malignant behaviour through genetic or other alterations. 

(a) Origin from Stem Cells Present in Tissue
Many CSCs show similarities to normal stem/progenitor cells 
in phenotype, function and cell surface markers; for example, 
CD44+CD24−/low mammary gland progenitor cells resemble 
CD44+CD24−/lowLin− CSC cells in breast cancer[29]. With an increase 
in age, most adult stem cells appear to increase the expression of 
gate-keeping tumour suppressors like p16Ink4a, p19ARF and p53[4,30]. 
These suppressors negatively regulate cell survival and regeneration. 
This may reduce incidence of cancer in aging tissues while 
simultaneously downregulating proliferative capacity. Transformation 
of normal cells into cancer cells often requires a series of mutations 
in oncogenes and tumour suppressor genes; these may accumulate 
over a period of years[4]. While somatic cells are periodically replaced 
by cellular turnover, stem cells may persist in tissues long enough 
to accumulate the multiple mutations required for cancer initiation. 
Inactivation of the retinoblastoma (Rb) gene in retinoblasts can 
cause their transformation into CSCs that ignore growth regulatory 
signalling cascades which would normally have caused proliferation 
to cease. As the pRb protein is crucial in maintaining quiescence in 
cells (including adult stem cells), loss of pRb function in CSCs may 
cause cancer initiation[2,4,31]. Other childhood cancers such as Wilm’s 
tumour and some forms of leukaemia are presumed to arise from 
stem cells in the kidney and haematopoietic system respectively and 
appear to require relatively few genetic modifications for neoplastic 
transformation[2,4]. Chronic tissue damage, as may occur after long-
term tobacco usage or prolonged UV irradiation, could lead to an 
increased proliferation of stem cells within the affected tissues as the 
body seeks to repair the damage. These constitutively proliferating 
stem cells could be targets for further carcinogen induced mutations 
leading to tumorigenesis[2,32]. Loss of ten-eleven-translocation-2 
(Tet2) gene has been reported to increase self-renewal in stem cells, 
contributing to progressive defects in haematopoiesis and myeloid 
transformation in vivo[33]. 

(b) Origin from Somatic (Non-Stem) Cells
The ability of a differentiated cell to acquire the property of self 
renewal and become a CSC has been shown by transfection studies 
using oncogenes[2]. Reports indicate that Src, an inducible oncogene, 
can cause transformation of MCF10A cells and generate CSC-
like cells within 16-24 hours of its activation[6,34]. Epithelial-to-
mesenchymal transition (EMT) occurs during normal morphogenesis 
and development and is also involved in metastasis of cancer cells[4]. 
Induction of EMT in normal human mammary epithelial (HMLE) 
cells by expression of Snail, Twist or treatment with transforming 
growth factor beta1 (TGFβ1) caused a number of cells to exhibit 
the CD44+CD24−/low expression profile of CSCs. These cells also 
exhibited an increased ability to form mammospheres; EMT thus 
appears to result in the enrichment of CSCs in HMLE cells[6,29,35,36]. 
The mechanism by which EMT induces CSC formation may involve 
transcription factors like Forkhead box protein C2 (FOXC2). FOXC2 
was upregulated in immortalized HMLE cells in response to EMT 
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Table 1 Cancer Stem Cell (CSC) markers in human cancers. Some of the principal CSC markers which have been reported in a variety of human cancers are 
listed in the table. These markers can be of use in identification of CSCs.
Human Cancer Type
Breast cancer
Pancreatic cancer
Brain cancer
Colon cancer
Lung cancer (small cell/ non-small cell lung cancer)
Head and neck cancers
Leukemia (AML)
Melanoma

Observed Phenotype/ Markers in CSCs
CD44+/CD24-/low/Lin− [13,55], ALDH1+ [41,55]

CD44+/CD24+/ESA+ [13,29,56], CD133+ [29,57], ALDH1+ [29,58]

CD133+ [29,59,60], SSEA-1 [29,61]

CD133+ [29,41,62], ALDH1+ [41,63]

CD133+ [29,54], ALDH1+ [41,64]

CD44+ [29,65], Cytokeratin 5/14 [29,65]

CD34+/CD38- [12,29,41,66]

ABCB5+ [41,67]

CANCER STEM CELL THERAPEUTICS
As tumour cells tend to proliferate rapidly, most conventional cancer 
treatment strategies, including radiotherapy and chemotherapy, are 
targeted at relevant molecules which direct them to inhibit rapidly 
dividing cells[4]. Evidence indicates that inherent mechanisms 
present in CSCs render them more resistant to chemotherapy and 
radiotherapy; thus, conventional anti-cancer approaches might 
fail to eradicate the CSC subset that initiates and perpetuates 
tumorigenesis[2,50,68]. Stem cells possess a wide variety of transporters, 
including ATP-binding cassette (ABC) transporters such as ABCG2, 
ABCB1/ multi-drug resistance-1 (MDR-1), ABCC1 and ABCA2, 
as a possible defense against xenobiotic toxins[2,69,70]. Several of 
these transporters play important roles in drug efflux and resistance 
to chemotherapeutic drugs. For example, leukaemic progenitor 
stem cells can efflux mitoxantrone and daunorubicin, two agents 
commonly used in treatment of AML[71]. Drug-resistant variants of 
CSCs can also produce a population of DNA-repairing tumour cells. 
CD133+ CSCs in gliomas express 30-fold higher levels of the DNA 
repair protein O6-methylguanine-DNA methyltransferase (MGMT) 
than CD133− cells and, due to increased DNA repair capacity, 
are more resistant to radiotherapy[41,59]. Overexpression of certain 
enzymes involved in catalyzing xenobiotic substrates, e.g. ALDH1 
(which catalyses oxidation of acetaldehydes produced from ethanol) 
may provide some resistance against chemotherapeutic drugs like 
cyclophosphamide[41,72]. Cell cycle kinetics may also explain why 
CSCs are comparatively resistant. As mentioned previously, rapidly 
dividing cells are more sensitive to cytotoxic therapies. Experiments 
indicate that a particular subset of leukaemia CSCs remain quiescent. 
Similar phenomena may also occur in CSCs in other cancers[68,73]. 
Thus, CSCs appear to employ a combination of mechanisms to 
increase their resistance to cancer therapy. These mechanisms might 
vary between tumour types. 
    A number of methods have been proposed for dealing with CSC 
proliferation and self-renewal. Support for the potential therapeutic 
utility of targeting CSCs has been provided by the observation that 
selective killing of CSCs identified by ABCB5 expression in human 
melanoma inhibits experimental tumour growth[67]. Some of these 
proposed methods are discussed in the following sections. However, 
these are still mainly at an experimental or pre-clinal stage and further 
research is necessary to fully develop and explore the therapeutic 
potential of such methods in the treatment of human cancers.

(a) Targeting CSCs using surface markers 
Surface markers used to identify or isolate CSCs may serve as 
attractive targets for monoclonal antibody based or siRNA based 
therapies. In human glioma cells and breast cancer, CSCs exhibit 
reduced 26S proteasome activity and increased resistance to ionizing 
radiation compared with other cell subpopulations within the tumour. 
Targeted killing of CSCs via a proteasome-dependent thymidine 

kinase suicide gene was reported to cause tumour regression[74]. 
Conjugating an anti-human CD133 antibody to mono-methyl 
auristatin F, a potent cytotoxic drug, inhibited growth and induced 
apoptosis in Hep3B hepatocellular and KATO III gastric cancer 
cells in vitro[10,75]. In vitro apoptosis of CD133+ glioma CSCs has 
been reported to be induced by shRNA mediated knockdown of L1 
cell adhesion molecule (L1CAM) which is preferentially expressed 
on these CD133+ cells[76]. Thus, conjugating drugs to antibodies 
directed against specific cell surface markers might be a potential 
method for targeted therapy of CSCs. Salinomycin, a potassium 
ionophore has been reported to induce breast CSC specific toxicity 
and downregulate expression of certain CSC associated genes[77]. 
However, although such approaches appear promising, one potential 
shortcoming of such targeting is that many CSC surface antigens may 
also be overexpressed by stem cells in normal tissue[68] and targeting 
approaches using such markers can have toxic side effects[7,10]. Also, 
as CSCs generally comprise only a small minority of cells within 
cancer cell populations, most high-throughput cell viability assays, 
when applied to populations of cancer cells in vitro, often fail to 
identify agents with CSC specific toxicity[77].
    Instead of direct killing, another approach could involve increasing 
sensitivity of CSCs to chemotherapy or radiotherapy. ABCB5 
mediates resistance to the chemotherapeutic drug doxorubicin 
in malignant melanoma. Such drug resistance can be overcome 
using targeted monoclonal antibodies to inhibit ABCB5-dependent 
drug efflux[50,78]. siRNA-mediated ABCB5 gene silencing also 
overcomes doxorubicin resistance and increases the sensitivity of 
melanoma cells to the chemotherapeutic drugs 5-fluorouracil (5-
FU) and camptothecin[50,79]. Enhanced resistance of HNSCC CSCs 
to radiotherapy can be reduced by knockdown of the transcriptional 
repressor Bmi-1[52]. Inhibiting Chk1 and Chk2 checkpoint kinases 
has been reported to reduce resistance of CD133+ glioma CSCs 
to ionizing radiations[50]. Curcumin (diferuloyl methane), a major 
component of the rhizome of Curcuma longa L., has also been 
reported to exert its anti-cancer activity by targeting CSCs in 
colorectal, pancreatic, breast, brain and head and neck cancers[80]. 

(b) Targetting molecular pathways involved in CSC self-renewal 
and proliferation
Potential signalling pathways that may serve as therapeutic targets 
for controlling CSC self-renewal and proliferation include Wnt/ 
β-catenin, Hh, Notch, NF-κB, PTEN and bone morphogenetic 
protein (BMP) mediated signalling cascades[41,68,70,81]. Inhibition of the 
Notch pathway with γ-secretase inhibitors can potentially be of use 
in downregulating CSC self-renewal; however, clinical use could be 
restricted by high hydrophobicity and side effects including possibly 
goblet cell metaplasia[41,70]. Cyclopamine, a Hh signalling inhibitor is 
also under study as a therapeutic against CSCs but again, clinical use 
could be limited by high hydrophobicity and systemic toxicity[41,82]. 
Silencing H-Ras in a tumour initiating cell (i.e. CSC) enriched breast 



cancer cell line has been reported to downregulate self renewal 
without affecting cell differentiation[83]. Treatment with miR145 
incorporated with polyurethane-short branch polyethylenimine (PU-
PEI) has been found to block key signal transduction pathways and 
effectively downregulate Oct-4 and Sox2, transcription factors which 
control pluripotency in stem cells including CSCs[84]. 

(c) Differentiation therapy
As promoting differentiation of CSCs within a tumour would lead 
to tumour degeneration and might also increase susceptibility to 
conventional chemotherapies, potential therapeutic strategies could 
include modulation of specific signalling cascades and alteration of 
specific gene expression[50]. Modulation of cellular signalling cascades 
by Notch pathway inhibitors in medulloblastoma and modulation 
of BMP signalling in experimental models of human glioblastoma 
have been shown to promote CSC differentiation[15,85]. Enforced 
expression of let-7 miRNA in breast cancer has been reported to 
induce differentiation of CD44+CD24−/low CSCs[81]. Administration of 
a monoclonal antibody directed against the cell adhesion molecule 
CD44 to nonobese diabetic SCID mice transplanted with human 
AML has been reported to induce differentiation and appreciably 
reduce leukaemic repopulation[86]. 

(d) Use of nanomedicine in targeting CSCs and drug delivery
Some recent therapeutic approaches for targeting CSCs involve 
the use of nanomedicine. Imetelstat decreases telomerase activity, 
suppresses breast CSC self-renewal potential and inhibits 
tumorigenicity of PANC1 and MDA-MB-231 cells in vivo. 
Delivery of such inhibitors to CSCs by nanotechniques may allow 
efficient targeting for therapeutic purposes[70,87]. Even conventional 
chemotherapeutic drugs can be promising for CSC therapy if efficient 
targeting methods can be developed. Doxorubicin-tethered gold 
nanoparticles have been reported to mediate potent drug delivery 
to breast CSCs and reduce cancer initiation and tumour growth in 
murine models[88].

CONCLUSION
CSCs appear to be play pivotal roles in tumour initiation, 
development, metastasis and development of therapeutic resistance. 
Thus, modern cancer treatments would need to target self-renewal or 
other critical molecular pathways in CSCs as their eradication could 
possibly lead to tumour regression and a better prognosis in cancer 
afflicted patients. The challenge, for effective alleviation of the 
disease cancer, lies in devising therapies which can cause destruction 
of CSCs while causing minimal damage to normal cells.
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