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ABSTRACT 

The tumor suppressor p53 is one of the most highly studied 
proteins in the field of cancer research because of its role in tumor 
cell survival and apoptosis. Research over the past three decades 
has identified p53 as a multifunctional transcription factor, which 
regulates the expression of >2,500 target genes. p53 impacts myriad, 
highly diverse cellular processes, including regulation of the cell 
cycle, maintenance of genomic stability and fidelity, apoptosis, 
senescence and longevity, metabolism, angiogenesis, cellular 
differentiation, and the immune response[1].
    It is one of the most important and extensively studied tumor 
suppressors. Approximately half of human cancers have inactivating 
mutations in the p53 gene (known as TP53 in human) and most of 
the remaining malignancies deactivate the p53 pathway by increasing 
its inhibitors, reducing its activators or inactivating its downstream 
targets. Activated by various stresses, including genotoxic damage, 
hypoxia, heat shock and oncogenic assault, p53 blocks cancer 
progression by inducing transient or permanent growth arrest, by 
enabling DNA repair or by activating cellular death programs[2].
    In addition to the indisputable importance of p53 as a tumor 
suppressor, an increasing and sometimes bewildering number of new 
roles for p53 have recently been reported, including the ability to 
regulate metabolism, fecundity, and various aspects of differentiation 
and development[3]. 
    It is impossible to cover all aspects of p53-associated biology in 
one review and so we have reluctantly passed over many fascinating 
topics and we will focus on current strategies and challenges to 
restore p53 tumor suppressor function in established tumors and the 

therapeutic approaches designed to promote ore deliver wild-type 
p53 function to cancer cells (i.e. adenoviral gene transfer and small 
molecule activator of p53, to inactivate p53 inhibitors and to restore 
wild-type function to mutant p53).
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INTRODUCTION
The tumour suppressor TP53 (MIM# 191170), located on 
chromosome 17p13.1 is known as ‘the guardian of the genome’ or 
‘the cellular gatekeeper of growth and division’. The gene contains 
11 exons and transcribes a 2.8 kb mRNA, which is translated into 
a 53 kDa phosphoprotein containing 393 amino acids. p53 is a 
key regulator of cellular growth control and plays a central role in 
the induction of genes that are important in cell cycle arrest and 
apoptosis following DNA damage[4]. 
    Whilst the tumor suppressor functions of p53 have long been 
recognized, so that p53 is one of the most highly studied tumor 
suppressor genes in the field of cancer research, the contribution of 
p53 to numerous other aspects of disease and normal biology and 
physiology is only now being appreciated. This ever increasing 
range of responses to p53 is reflected by an increasing variety of 
mechanisms through which p53 can function, although the ability to 
activate transcription remains key to p53’s modus operandi. 
    p53 is a central hub in a molecular network controlling cell 
proliferation and death in response to potentially oncogenic stress 
conditions. A wide array of covalent post-translational modifications 
and protein interactions regulate its stability and sub-cellular 
localisation and modulate the nuclear and cytoplasmic activities of 
p53[3].
    The p53 relatives p73 and p63 are entangled in the same 
regulatory network, being subject at least in part to the same 
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modifications and interactions that convey signals on p53. Other p53 
interactors exert an effect further downstream to directly modulate 
p53 biological effects, for example, at the mitochondria[5].
    One recent review lists 129 such p53 transcriptional targets 
that were identified as a result of either single gene discoveries 
or multigene screens[6]. There are likely to be many more genes 
specifically bound and activated by wild-type p53 (wtp53). 
Furthermore, the number of genes whose expression is altered 
indirectly upon induction of p53 is likely to be in the thousands, both 
with canonical[6] and non-canonical[7] p53 response  elements (REs).
    This complex set of molecular events actively contribute to the 
resulting cellular output and lead to growth restraining responses. 
Control of p53’s transcriptional activity is crucial for determining 
which p53 response is activated, a decision we must understand if we 
are to exploit efficiently the next generation of drugs that selectively 
activate or inhibit p53[4].
    With the molecular elucidation of p53 signalling continuing to 
unravel novel concepts and broaden our horizon of p53 function 
and the importance of p53 signalling for the pathogenesis of cancer, 
drug development programs have begun to target the p53 signalling 
pathway. 
    In this review, we describe the multi-faceted spectrum of p53 
activities, discuss current strategies to active p53 in tumors and will 
conclude with an outlook on future strategies and challenges to 
translate p53-targeting therapies into clinical practice.

The complex biology of p53
Three decades of p53 research have produced more than 50,000 
publications, which characterized p53 as a transcription factor 
orchestrating transcriptomic changes in response to a broad spectrum 
of cellular stresses. In more recent years, it has become clear that p53 
function extends beyond canonical cell cycle, senescence and cell 
death signalling[2].
    Gene expression microarrays have revealed that p53 associated-
gene clusters impact additional, highly diverse biological processes 
such as metabolism, aging, energy metabolism, angiogenesis, 
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Figure 3 Histological examination of the tumor.

immune response, cell differentiation, motility and migration and 
cell–cell communication[2]. Recent studies have demonstrated how 
p53-dependent activation of microRNA genes can participate in the 
modulation of various biological activities[7].
    The complex repertoire of p53 regulated genes further highlights the 
need to understand how p53 is regulated and how selects its targets.

Regulate the regulator 
p53 is regulated by an array of posttranslational modifications both 
during normal homeostasis and in stress-induced responses. More 
than 36 different amino acids within p53 have been shown to be 
modified in various biochemical and cell culture studies[8]. 
    Since the first discoveries showing that p53 undergoes stress 
induced phosphorylation or acetylation, there have been numerous 
complicated studies describing the modifications to p53 and 
deciphering how they affect p53 function as a transcriptional 
regulator. Phosphorylation of p53 is classically regarded as the first 
crucial step of p53 stabilization, but the tight control of cellular 
p53 levels is primarily achieved through its ubiquitin-mediated 
proteasomal degradation. A number of excellent reviews cover these 
aspects of p53 regulation[8-11].

p53 mutations and human cancers 
As a tumour suppressor, the major p53 functions are to regulate 
growth arrest and apoptosis (see the review by Vousden and Prives[3]) 
(Figure 1) and the balance of these two cellular events can determine 
the fate of individual cells. Unlike other tumour suppressor genes, 
most TP53 mutations in tumours are of the missense type and lead to 
single amino acid changes that predominantly affect residues in the 
DNA binding domain of the protein, strongly suggesting that targeted 
sequence-specific DNA binding is crucial for the escape of tumours 
from p53 suppressor activity[7].
    More than 26,000 somatic mutation in TP53 appear in the 
international agency for research on cancer (IARC) TP53 database 
version R14 (http://www-p53.iarc.fr/; the International Agency for 
Cancer Research TP53 Mutation Database; TP53 Website).

Figure 1 (from Vousden and Prives[3]). Selective impact of p53 modifications. p53 protein domains include the transcriptional activation domain I (TAD 
1, residues 20-40), the transcriptional activation domain II (TAD II, residues 40-60), the proline domain (PP, residues 60–90), the sequence-specific core 
DNA-binding domain (DNA-binding core, residues 100–300), the linker region (L, residues 301-324), the tetramerization domain (Tet, residues 325-356), 
and the lysine-rich basic C-terminal domain (++, residues 363–393). A few examples are depicted of residues that when modified by phosphorylation (P), 
acetylation (Ac), or ubiquitination (Ub), result in a specific cellular outcome in response to p53 activation that depends on preferential activation of the 
indicated target genes.
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    The frequency of TP53 mutation varies from around 10% 
(hematopoietic malignancies) to 50-70% (ovarian, colorectal, and 
head and neck malignancies)[4,12]. Germline mutations of TP53 
cause Li-Fraumeni syndrome, which is a familial cancer syndrome 
including breast cancer, soft tissue sarcoma, and various other 
types of cancer[13]. Most TP53 mutations in human cancers result in 
mutations within the DNA binding domain, thus preventing p53 from 
transcribing its target genes. However, mutant p53 (mutp53) not only 
loses normal function of the wild-type protein but also gains new 
abilities to promote cancer[14]. 
    Somatic mutations at individual residues have been associated with 
specific clinical phenotypes in different type of cancer[15]. In addition, 
the spectrum of p53 deletions or mutations observed among tumor 
cells suggests that the mutations vary in their prognostic power. 
Disruptive p53 mutations in tumor DNA are reported to be associated 
with reduced survival following surgical treatment of Head and Neck 
Squamous Cell Carcinoma (HNSCC)[16].
    In addition to the presence of somatic mutations, polymorphic 
features of the gene may also contribute to alteration of normal 
p53 function and variants, mainly in the form of single nucleotide 
polymorphisms, can be expected to impact tumor susceptibility to 
cytotoxic drugs, radiation and chemo-radiation[4,17,18]. Elucidation of 
the effect of TP53 polymorphisms is a challenge, which is attracting 
an interest in the recent years. In fact, no uniform conclusion can be 
drawn for roles of polymorphisms and mutations in the TP53 gene as 
results are so far inconsistent. 

p53 as a Sensor of DNA Damage: apoptosis or cell cycle arrest 
and senescence
Environmental hazards (e.g., UV sunlight, chemical mutagens, 
and oncogenic pathogens), and cell-intrinsic metabolic processes 
can damage DNA. Such damage can alter DNA structure and 
consequently gene transcription, or can cause mutations that impact 
function. If left unrepaired, DNA damage can cause neoplastic 
growth. There are very sophisticated systems for detecting DNA 
damage and repairing the genome. p53 is normally in ‘standby’ 
mode and plays an important role in such “caretaker” systems. 
This is why p53 is the so called “guardian of the genome”[16]. p53 
acts as an internal sentinel for DNA damage, and other cellular 
stresses, including hypoxia, oncogene activation, starvation, altered 
mitochondrial and ribosomal biogenesis, spindle poisons, or denuded 
telomeres. Depending on the level of cellular compromise, p53 can 
either promote the repair and survival of damage cells or promote the 
permanent removal of irreparable damage cells through apoptosis or 
autophagy[19]. 
    Many of our models for p53 function suppose that induction 
of programmed cell death is the key mechanism by which p53 
eliminates cancer cells. During cell cycle arrest, p53-regulated 
pathways, including those involving growth arrest and DNA damage 
inducible 45 (Gadd45) and the p53 ribonucleotide reductase small 
subunit 2 (p53R2), are significant in the repair of damaged DNA[16]. 
In the absence of competent repair activity, DNA damage induces 
apoptosis (a) by transcriptional activation of critical apoptosis 
regulators of the extrinsic, i.e. death receptor-dependent, and the 
intrinsic, i.e. mitochondria-mediated apoptosis signalling pathway, 
and (b) by directly impacting mitochondrial membrane physiology 
via the intricate interplay with mitochondrial membranes and Bcl-2 
family proteins[2].
    p53-controlled apoptosis involves transcriptional induction of 
components of the death receptor and mitochondrial pathways 
including CD95, Puma, Noxa, Bax and others, which cooperatively 

promote cell death. In addition, p53 protein can directly promote 
mitochondrial outer membrane permeabilization (MOMP) to trigger 
apoptosis by modulating the MOMP governing Bcl-2 family[20].
    Early studies showed that wtp53, functioning mainly as a 
transcription factor, can bind the Bax gene promoter region and 
regulate Bax gene transcription. Bax is a member of the Bcl-2 
family, which forms heterodimers with Bcl-2, inhibiting its activity. 
The Bcl-2 protein family plays an important role in apoptosis and 
cancer[21]. For example, Bcl-2 controls the release of cytochrome c 
from the mitochondria, which activates the apoptotic pathway by 
activating caspase 9. Caspase 9 then activates executioner caspase 3. 
Both caspases play key roles in the apoptotic pathway.
    Moreover, upon stress, a p53-protein based mitochondrial 
apoptosis program may be activated and a cytoplasmic pool of p53 
rapidly translocates to the mitochondrial surface, where it physically 
interacts with both anti- andpro-apoptotic Bcl-2 family members to 
inhibit or activate their respective functions, leading to MOMP and 
apoptosis. In this role, p53 acts like a BH3-only protein, either as 
direct activator of the Bax/Bak effectors, or as sensitizer/de-repressor 
of Bcl-xL/2 and Mcl1[20].
     More in details, PUMA (p53-upregulated modulator of apoptosis) 
is a key mediator of the apoptotic pathway induced by p53. When 
PUMA is disrupted in colon cancer cells, p53-induced apoptosis is 
prevented. Thus, PUMA may play a pivotal role in determining cell 
fate (programmed cell death versus cell cycle arrest) in response 
to p53 activation[22]. CD95 (also called Fas and Apo-1) is a “death 
receptor” indicating its major role in apoptosis. Several reports 
have indicated the CD95 pathway to play an important role in 
apoptosis induced by cytotoxic agents, and that this system involves 
the activation of wtp53[23]. Therefore, the p53 status may influence 
chemosensitivity via CD95 signalling. However, a recent report 
indicated that CD95 could promote tumor growth[24].
    By contrast, the p53-regulated Ring domain E3 ubiquitin ligase 
MDM2 (murine double minute 2) functions to produce negative 
feedback, which regulates p53 activity[25]. MDM2 recognizes a short 
region in the TA domain of p53 and interferes with its transcriptional 
activity; at the same time, MDM2 interacts with the DBD region and 
ubiquitinates p53, promoting its proteasomal degradation. As MDM2 
is a transcriptional target of p53, inhibition by MDM2 is part of a 
negative feedback loop on p53 activation[26].
    In addition, depending on the type of cellular stress, p53 can induce 
G1 arrest through activation of transcription of the cyclin-dependent 
kinase inhibitor p21. The p21/WAF1 (wtp53 activated fragment 1) 
gene product, a p53 target gene, inactivates the proliferating cell 
nuclear antigen (PCNA), which can regulate DNA replication, and 
induce a p53-dependent G1 arrest through the inhibition of cyclin/
CDK activity[16].
    In the presence of cellular stresses, p53 is subjected to a complex 
and diverse array of covalent post-translational modifications. These 
include phosphorylation, acetylation, poly (ADP-ribosyl) ation, 
ubiquitylation and sumoylation. In response to cellular stress, Ser15/
Ser20 in p53 are phosphorylated and MDM2 is separated from the 
phosphorylated p53, leading to the stabilization and activation of p53. 
Therefore, p53 can bind to the promoter of the p21 or p53R2 genes 
associated with DNA repair, and induce their expression[16].
    It is currently unknown whether p53 can also activate oxidative 
stress-induced necrosis. Intriguingly, recent findings provide genetic, 
biochemical and pharmacological evidence that fundamentally 
expands our understanding of p53-mediated cell death networks 
into necrosis An unexpected critical role of stress-accumulated 
mitochondrial p53 protein in directly regulating permeability 
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transition pore (PTP) at the inner membrane has been described.  
Upon oxidative stress, p53 triggers PTP opening by engaging in a 
physical interaction with Cyclophilin D (CypD), thereby inducing 
necrotic cell death in mouse and human cells[20]. 
    However, transient cell cycle may not lead to tumor eradication, 
because a cell with oncogenic potential that cannot be repaired may 
resume proliferation[27]. Therefore, the other mechanism, cellular 
senescence, may play an important role in p53-mediated tumor 
suppression. Cellular senescence is permanent cell cycle arrest. 
There are many reports regarding the correlation between tumor 
development, p53 and senescence[28]. The inactivation of p53, 
as is present in most human cancers, allows cells to evade cellar 
senescence, thus resulting in tumor development. How precisely p53 
determines whether or not the activation of the senescence program 
or the apoptosis program occurs still remains to be elucidated. 
This question is especially important for the development of p53-
based cancer therapy, including approaches in combination with 
conventional chemotherapy. Most conventional chemotherapeutic 
agents achieve elimination of cancer cells by killing them. Therefore, 
if p53 induces senescence rather than apoptosis, a conflict will emerge. 
    Vousden and Prives[3] proposed a model wherein the decision 
between life and death can be determined by the extent of damage or 
the duration of stress. In their model, a low level of stress which can 
be repaired elicits a DNA repair/survival response, while a high level 
of stress that cannot be repaired induces an apoptotic or senescence 
response. This dual nature of p53, killer and protector, indicates 
the possibility that p53 may also act as tumor promoter. The anti-
apoptotic function of p53 may lead to the survival of damaged cells, 
which may increase the possibility for malignant transformation 
(Figure 2).

reactive oxygen species[30,31]. Although this function for p53 would 
help inhibit tumor progression by protecting cells against DNA 
damage and genome instability, down-regulation of reactive oxygen 
species through these p53-dependent mechanisms can also result in 
decreased susceptibility to apoptosis[32].

p53 and autophagy
An emerging non-nuclear function of p53 is in regulation of 
autophagy, a process that allows removal of damaged cytoplasmic 
organelles and adaptation of cells to metabolic stress. Although p53 
can transactivate genes that induce autophagy under stress conditions 
(e.g, DRAM, TSC2, Sestrin1 and 2, PTEN, and IGFBP3), depletion 
or mutation of p53 actually increases autophagy, suggesting that p53 
constitutively limits this process in normal growing cells[33,34]. Even if 
the mechanism remains unknown, the autophagy-inhibitory activity 
is ascribable to the cytoplasmic pool of p53, as degradation of 
cytosolic p53 by MDM2 promotes autophagy after nutrient depletion, 
endoplasmic reticulum stress, or treatment with rapamycin[5,35]. In 
fact, p53 can be activated by metabolic adversity (such as starvation) 
- a response that can be mediated through the action of AMP-
activated protein kinase (AMPK), a key component of the cell’
s response to bioenergetic stress[36]. p53 then promotes a program 
of gene expression (including the induction of AMPK expression) 
to negatively regulate the kinase mTOR (mammalian target of 
rapamycin), a central node in the control of protein synthesis[3,33,37].

p53 and the regulation of ribosome biogenesis
In a growing cell, ribosome biogenesis is a major consumer of 
cellular energy and resource. Thus, as growth conditions change, 
cells must rapidly rebalance ribosome production with the availability 
of resources. It has been shown that serum starvation activates p53 
and induces cell cycle arrest in an RPL11 (L11)-dependent manner 
through a mechanism involving translocation of L11 of from the 
nucleolus to the nucleoplasm[38]. The model derived from a myriad of 
in vitro data suggested that when cells sense nutrient-shortage stress, 
ribosomal proteins are released from the nucleolus to the nucleoplasm 
where they can bind to MDM2 and inhibit its E3 ligase activity, 
leading to activation of p53[39]. The relevance of these findings was 
further substantiated by the discovery of MDM2 mutations in the 
region that binds to L11 in human cancers. As a result, the MDM2 
mutants are refractory to inhibition by ribosomal proteins and are 
maintained in a p53-suppressive mode[40].

p53, tumor glycolysis and fatty acid metabolism
Recent observations show that many tumor suppressor genes 
play important roles in metabolic regulation, in addition to their 
established roles in cell survival and apoptosis[19]. Cancer cells are 
characterized by aerobic glycolysis with the use of glucose and 
production of lactate. Several biologic functions of p53 decrease the 
glycolysis pathway in cells. p53 induces TP53-induced glycolysis 
and apoptosis regulator (TIGAR) expression via transcriptional 
activation. Moreover, wtp53 downregulates phosphoglycerate 
mutase (PGM), and mutation of p53 can enhance PGM activity and 
glycolytic flux[41,42].
    In addition, p53 can reduce intracellular glucose levels by 
inhibiting the expression of glucose transporters. For example, p53 
directly represses the transcriptional activity of the GLUT1, GLUT3 
and GLUT4 gene promoters[43].

p53, aging and stem cells
Cancer is an age-related disease. Consequently, genes that stop cancer 
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Figure 2 (from Vousden and Prives[3]). Model of the dual mechanism of 
p53 function in tumors. The result of p53 activation depends on multiple 
variables. In this model, the p53 response to low stress results in cell 
cycle arrest, growth inhibition and DNA repair. This response enables 
cells to restore the damage induced by the cellular stress. But when the 
cells receive high stress that cannot be restored, p53 acts as killer that can 
induce apoptosis or senescence, preventing proliferation of defective cells. 
If p53 mistakenly responds as a protector when cells receive a high stress 
that cannot be repaired, the cells keep the genetic damage, which can lead 
to or contribute to cancer progression (dotted line).

p53 and cell survival
In addition to eliminating damaged cells, p53 can also contribute to 
cell survival through a surprisingly large number of mechanisms[3]. 
Numerous p53 target proteins function to inhibit apoptosis, including 
p21, decoy death receptors such as DcR1 and DcR2, the transcription 
factor SLUG (which represses the expression of PUMA), and several 
activators of the AKT/PKB (protein kinase B) survival pathways[29]. 
Another group of p53-inducible genes have recently also been 
shown to act as antioxidants by decreasing the levels of intracellular 



progression promote longevity by restraining genomic instability, and 
inhibiting the growth and expansion of genetically aberrant cells. p53 
has a prominent - and controversial - role in the regulation of ageing 
and longevity. Excessive p53 tumor suppressive activity, however, 
can be detrimental to organism homeostasis by promoting certain 
aspects of aging[2]. Maintenance and regeneration of adult tissues, 
and consequently longevity depend on the continuous proliferation 
and differentiation of resident stem cells[44,45]. In line with a tumor 
suppressive, pro-death and anti-proliferative role of p53, deficiency 
in p53 was shown to attenuate profound defects in tissue homeostasis 
caused by mutations in DNA repair genes. Some studies suggest 
that moderate p53 activation is beneficial for tissue homeostasis, as 
chronic hyperactivation of p53 decreases longevity, while moderate, 
physiological enhancement of p53 activity with intact regulatory 
mechanisms to control p53 stability, induces an anti-aging phenotype. 
It appears that duration and extent of stress and consequently levels 
p53 activity determine cell and organism fate; high p53 activation 
restricts proliferation, low levels induce cell survival, and decrease 
oxidative damage via induction of an antioxidant gene signature[46,47].

p53 and miRNA
Protein-encoding genes are not the only transcription targets of 
p53. Several groups independently reported that p53 can directly 
regulate the expression of specific microRNAs (miRNAs), most 
dramatically the miR-34 locus consisting of miR-34a, miR-34b, and 
miR-34c[48-51]. Several reports showed that p53 can bind directly to 
response elements within the miR-34a and miR-34b/c promoters to 
stimulate transcription from this locus. Certainly, miR-34a expression 
is physiologically relevant to the impact of p53 activity on cells: it 
can induce cell cycle arrest and senescence, as well as facilitate cell 
death[3] .
    It has now been reported that miR-192 and miR-215 are also 
induced by p53 and promote increased p21 expression[49]. Moreover, 
miR-145 has been implicated as a p53 target that can repress c-myc 
expression[52].

CURRENT STRATEGIES TO TARGET THE P53 
PATHWAY 

In tumor cells, the p53 pathway is often disrupted. Therefore, 
recovering the function of wtp53 and its targets in tumor cells is a 
key therapeutic objective; the obvious goal is to try to restablish the 
growth-inhibitory functions of p53 in cancer cells.
    Indeed, reintroduction of wtp53 using a replication-defective 
adenoviral vector showed efficacy in reversing the growth of several 
human tumor types, demonstrating that restoration of p53 activity 
is a viable anticancer therapeutic approach. However, as regulation 
of p53 activity becomes better understood, approaches that exploit 
our deeper understanding of the biochemistry of p53 activation have 
led to the identification of small molecules that can manipulate the 
endogenous non-functional protein that is so often expressed in 
tumor cells. As a result, strategies have focused on restoring wild-
type activity to the mutp53 protein, restoring functionality of the p53 
pathway or activating one of the p53 family members.
    In this review, we have described the multi-faceted spectrum of 
p53 activities; now we will discuss current strategies to activate p53 
in tumors, with an outlook on future strategies and challenges to 
introduce p53-targeting therapies into clinical practice.
    In particular, cancer therapies aimed at targeting signalling 
pathways controlled by p53 include p53-gene therapy, chemical 
chaperones, p53 C-terminal peptides and small molecules that can 
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target p53. Some therapeutic strategies are independent of p53 status 
in cancer cells, including high-linear energy transfer (LET) heavy-
ion radiation; others involve enhancement of cancer therapies with 
different strategies, including an RNA-silencing therapy targeted 
at DNA repair pathways and a molecular-targeting therapy for the 
survival pathway Akt-mTOR (Ota 2012) (Figure 3).

p53 gene therapy
In recent years, one line of attack that has been successful in the 
clinic is the introduction of exogenous wtp53 into cancer cells, either 
by gene delivery or by direct protein delivery[16,53] has been explored.
    The first p53-based gene therapy was reported in 1996. A retroviral 
vector containing the wild-type p53 gene under the control of an 
actin promoter was injected directly into tumors of non small cell 
lung cancer patients[54]. After development of a replication-defective 
recombinant p53 virus (Ad5CMV-p53)[3], many clinical subsequent 
trials have been performed.
    Although preliminary studies in cell cultures and in animal 
models have indicated the potential viability and low toxicity of 
these approaches[55-58], their efficacy in clinical trials is currently 
controversial. Clinical studies in lung, bladder, ovarian and breast 
cancer showed no beneficial effects compared to conventional 
treatments. On the other hand, encouraging results were reported 
in HNSCC, where p53 mutations are frequent, and their incidence 
increases with progression (for review: Ota et al, 2012[16]; Shen et al, 
2012[19]). 
    Because of its affinity for the cells of the upper aerodigestive tract, 
a modified adenovirus has been the most widely-used vector for p53 
gene therapy in HNSCC (AdCMV5-p53; INGN 201)[59,60]. Therefore, 
a recombinant human adenovirus that expresses functional wtp53 
has been approved by the Chinese government for the treatment 
of HNSCC[25,61]. Treatments showed that antitumor efficacy was 
associated with the expression and activity of functional p53, and 
adverse effects were also significant[54,62-64]. For a complete review on 
the current p53-based therapeutics for HNSCC, refer to Tassone et 
al[65] (Figure 4).
    Although such results are encouraging, further improvements in 
methods are required to accomplish the safe and effective delivery of 
wtp53 in vivo[16,66].
    Another way to eliminate cells with mtp53 is to deliver a virus 

Figure 3 (from Ota 2012[16]). p53-dependent and -independent therapeutic 
strategies for cancer cells. Circles, p53 status of cancer cells; black squares, 
cancer therapeutic tool; white squares, enhancer for cancer therapeutic 
tool; thin arrows, enhancement; dashed arrows, partial enhancement; thick 
arrows, therapeutic pathway. MDM2, murine double minute 2; XIAP, 
X-chromosome-linked inhibitor of apoptosis protein; wtp53, wild type 
p53; mtp53, mutant p53; siRNA, small interference RNA.



cycle arrest, apoptosis and growth inhibition[71,77]. For a review 
highlighting recent advances in the development of small-molecule 
MDM2 antagonists as potential cancer therapeutics, with special 
emphasis on Nutlin-3, refer to Shen et al[78].
    MI-219 binds to the p53 binding pocket in MDM2 and disrupts 
the MDM2–p53 complex, which leads to activation of p53, induction 
of growth arrest and apoptosis and suppression of xenograft tumor 
growth[75]. MI-219 also activates the p53 pathway in cells with wtp53. 
Apoptosis and cell cycle arrest were observed in xenograft tumors 
which resulted in tumor regression[71,79]. Unfortunately, this approach 
carries the risk of enhancing the pro-survival adaptation functions of 
p53 in some tumors[80,81]. Clarifying the mechanism(s) by which p53 
coordinates adaptation could lead to the discovery of new therapeutic 
targets in cancer expressing wtp53.
    Tenovin was found by a cell-based drug screen to activate p53. 
Tenovin acts as an inhibitor of the NAD+-dependent class III histone 
deacetylating activities of SirT1 and SirT2, two important members 
of the sirtuin family. Intra-peritoneal administration of tenovin-6 has 
been demonstrated to induce a regression of xenograft tumors in a 
mouse mode[82].
    Issaeva et al (2004) screened a chemical library and found 
the small molecule RITA (reactivation of p53 and induction of 
tumor cell apoptosis), which binds to p53 and inhibits the p53-
MDM2 interaction both in vitro and in vivo. RITA is reported to 
inhibit glycolytic enzymes and, therefore, induce robust apoptosis 
in various cancer cells, including leukemic cells, that retained 
wtp53[55,65,83,84]. They also found that the p53 released from MDM2 
by RITA promotes p21 and hnRNP K (a p53 cofactor), thus implying 
that p21 plays a major role in regulating cancer cell fate after p53 
reactivation[85].

p53 Restoration: Another approach in preclinical development 
involves restoring tumor-suppressing function to mp53. Studies have 
demonstrated that glycerol, as a chemical chaperone, can restore 
normal p53 function in mtp53 HNSCC[16].
    There is class of small molecules that reactivate the wild-type 
functions of mtp53. PhiKan083 is a carbazole derivative found from 
in silico screening of the crystal structure of p53. By binding mtp53, 
PhiKan083 raises the melting temperature of mtp53, which results in 
the reactivation of its function[86].
    PRIMA-1 (or ‘‘p53 reactivation and induction of massive 
apoptosis”) is another small molecule identified by cell-based 
screening which restored sequence-specific DNA binding and the 
active conformation of p53. It is known to induce apoptosis through 
the p53-dependent c-Jun-NH2-kinase pathway[85,87].
    CP-31398 is also a small qinazoline based molecule that was found 
to produce an active p53 in cancer cells and can restore the protein 
folding of mtp53 to a more natural conformation that permits a wild-
type function[16,88]. CP-31398 stabilizes the DNA-binding domain of 
p53 for both wt and mt (V173A and R249S) p53[89].

Molecules that disrupt exogenous p53 inhibitors: The causative 
role of human papillomavirus-16 (HPV16) in HNSCC is largely 
attributed to two  HPV16 oncogenes, E6 and E7. Since inactivation 
of p53 by HPV16 E6 is critical for HPV-mediated tumorigenesis, 
reactivation of p53 may be an efficient strategy to eliminate HPV16-
positive HNSCC cells. Recent work has identified CH1iB as a 
small molecule that disrupts the interaction between HPV16 E6 and 
p300 in HPV 16-positive UMSCC47 and UPCI-SCC090 HNSCC 
cells[65,90]. CH1iB increased total and acetylated p53 levels, enhanced 
p53 transcriptional activity, and increased the expression of p53-
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that preferentially target cells that lack functional p53. Adenoviruses 
contain an E1B gene producing a 55 kD protein that inactivates 
host p53 to promote host cell survival. Extensive in vitro and in vivo 
studies showed that Onyx-015, an adenovirus lacking the E1B gene, 
developed to selectively eliminate cells without functional p53, 
is capable of replicating in and promoting the lysis of carcinoma 
cells. In the absence of wtp53 activity in cancer cells, the generation 
of a mutated viral vector for tumor cell lysis (as Onyx-015) was 
exploited[16,64,65,67]. Accordingly, the Onyx 015 reagent, a p53-
targeting oncolytic mutant adenovirus, has been developed for 
clinical application. However, evaluation of numerous clinical 
trials performed thus far have indicated that the administration of 
Onyx-015 as a single agent produces only marginal benefit, whereas 
its administration in combination with conventional therapy is more 
effective[68].

Figure 4 (from Tassone et al[65]). Current p53-based therapeutics for 
HNSCC. Adenoviral p53 gene therapy, Ad-p53, increases wtp53 levels in 
HNSCC cells. Onyx-015 selectively eliminates inactive p53 HNSCC cells. 
PRIMA-1 restores the ability of mtp53 to bind to the p53 transcriptional 
response elements of target genes and CP-31398 stabilizes the DNA 
binding domain of mt and wtp53. Nutlin-3 and RITA restore p53 function 
by blocking the p53-MDM2 interaction. CH1iB disrupts the HPV16 
E6-p300 interaction to reactivate p53 in HPV16-positive HNSCC.

Small molecules and chaperones 
p53 Stabilization: Our growing understanding of how p53 is 
regulated has also led to the development of small molecule drugs 
that stabilize and activate the p53 protein.
    As can be envisaged, the MDM2-p53 interplay is a particularly 
attractive target for therapeutic intervention in cancer. Increasing 
the expression and activity of wtp53 is the ultimate goal in most 
treatment strategies. MDM2 is an E3 ubiquitin ligase which controls 
p53 degradation via ubiquitylation[19,69,70]. Many tumors overexpress 
MDM2, even tumors without p53 mutations[71]. In fact, due to the 
importance of the MMD2-p53 interaction, inhibition of this event 
with small molecules is regarded as having therapeutic potential. 
A number of different strategies have been employed to screen for 
and develop small molecules that bind specifically to the N-terminal 
region of MDM2 that interacts with p53[3,25,65,72].
    In particular, MDM2 inhibitors HLI98 and Nutlin 3A can, 
respectively, stabilize p53 and rescue tumor suppression function in 
solid tumors[19,73-75] and in hematological malignancies[76]. 
    The nutlins are cis-imidazoline compounds that act as antagonists 
of the MDM2-p53 interaction. Analysis of the crystal structure 
showed that nutlin binds in the pocket of MDM2 to prevent the p53-
MDM2 interaction. Nutlin can activate the p53 pathway, thereby 
inducing cancer cells and xenograft tumors in mice to undergo cell 



regulated genes, p21, miR-34a, and miR-200c.

Alternative targets
The discovery that the p53 family members p63 and p73 have 
similar structures and have similar biological activities has provided 
an additional anti-tumor strategy. Both p63 and p73 can induce 
apoptosis and do so by activation of some pro-apoptotic targets as 
wtp53[91]. Importantly, mutational inactivation of p63 and p73 is 
rare in human tumors and they are widely expressed, making these 
proteins attractive chemotherapeutic targets. Indeed, results from 
recent studies demonstrate that targeting these proteins may be a 
useful anticancer approach[75]. 
    Importantly, screens for proteins that interact with p53 have 
identified a family of proteins, termed ASPP, which can augment 
the ability of p53 to stimulate the expression of proapoptotic genes. 
One of these family members, iASPP, suppresses the activity of 
p53, p63 and p73 by interacting with their DNA binding domains[92]. 
Characterization of the activity of 37AA, a p53-derived peptide 
termed 37AA which could drive cell death through activation of p73, 
demonstrated that it functioned by interfering with iASPP binding 
with p73 and promoted its ability to stimulate the expression of 
proapoptotic genes such as PUMA and NOXA[93].

p53-Based Immunotherapy
Other strategies to restore wild-type p53 in the cell have been 
vaccines against mtp53, small mol¬ecules that bind to mtp53 to 
restore normal conformation and/or activity (e.g. ellipticine)[94]. p53 
protein, especially mtp53, may be a target of tumor antigen specific 
cytotoxic T lymphocytes that can mediate immune response of 
host against cancer in vivo[95]. Some cancer patients have antibodies 
against p53[96,97], although the frequency and clinical significance are 
still under debate[16].
    Speetjens et al[98] reported clinical trials of a p53-specific synthetic 
long peptide (p53-SLP) vaccine for metastatic colorectal cancer 
patients[99], where ten patients were vaccinated with p53-SLP in a 
Phase I and Phase II trial. Preclinical phase I/II trial of INGN-225 
(Introgen), a p53-modified adenovirus-induced dendritic cell vaccine 
for small cell lung cancer (SCLC) patients, has been reported[100]. 

Targeting tumor metabolism 
In the last years, the emerging role of p53 in tumor metabolism 
has suggested that drugs that mimic the metabolic effect of p53 
are able to perturb cancer cell metabolism and inhibit cancer cell 
proliferation[19]. Because tumor cells rely on glycolysis or ATP 
production for their survival, the molecular targets of p53 in the 
glycolytic pathway might be potential therapeutic targets in cancer. 
Indeed, the non-metabolizable glucose analogues 2-deoxyglucose or 
3-bromopyruvate can inhibit glycolysis and ATP production[101,102]. 
Moreover, the glucose transporter inhibitor phloretin inhibits 
glucose uptake and sensitizes tumor cells to the chemotherapeutic 
drug daunorubicin[103]. As p53 repression of GLUT3 expression is 
mediated by the IKK–NF-κB pathway, inhibition of the activation of 
the IKK–NF-κB pathway can, thereby, be another target for cancer 
treatment. R-roscovitine has been shown to inhibit the function of 
IKK and downregulate NF-κB activation. In addition to the NF-κB 
pathway, the cyclin-dependent kinase inhibitor roscovitine can also 
dramatically enhance the expression of p53 and block the degradation 
of p53 mediated by MDM2, thereby activating the p53 pathway and 
inhibiting glycolysis in tumors[104-106]. 
    The activation of AMPK induces fatty acid oxidation and 
mitochondrial respiration and represses fatty acid synthesis and 

glycolysis. Thus, AMPK may be a beneficial target for cancer 
treatment. Recent studies support this finding, showing that 
pharmacologic AMPK activators, such as metformin, phenformin, 
and AICAR, attenuate cancer cell growth and inhibit tumorigenesis 
in animal models[107,108].

CONCLUSION
Research over the past three decades has identified p53 as a 
multifunctional transcription factor, which regulates the expression 
of >2,500 target genes. p53 impacts myriad, highly diverse cellular 
processes, including the maintenance of genomic stability and fidelity, 
metabolism, longevity, and represents one of the most important and 
extensively studied tumor suppressors. Activated by various stresses, 
foremost genotoxic damage, hypoxia, heat shock and oncogenic 
assault, p53 blocks cancer progression by provoking transient or 
permanent growth arrest, by enabling DNA repair or by advancing 
cellular death programs. This potent and versatile anti-cancer activity 
profile, together with genomic and mutational analyses documenting 
inactivation of p53 in more than 50% of human cancers, motivated 
drug development efforts to (re-) activate p53 in established tumors. 
Thus it is indisputable that p53 represents an attractive target for the 
development of anti-cancer therapies. Whether p53 is ‘druggable’, 
however, remains an area of active research and discussion, as p53 
has pro-survival functions and chronic p53 activation accelerates 
aging, which may compromise the long-term homeostasis of an 
organism. Thus, the complex biology and dual functions of p53 in 
cancer prevention and age-related cellular responses pose significant 
challenges on the development of p53-targeting cancer therapies.
    In this paper, we have focused on the functions of p53 and 
therapeutic approaches targeting p53 for cancer therapy. However, 
despite recent advances in the research on p53’s function, it appears 
that various questions still remain to be answered before the full 
therapeutic of pharmacological modulation of p53 can be harnessed.
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