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INTRODUCTION
Brain arteriovenous malformations (BAVMs) are complexes of 
tortuous, tangled vessels located in the brain parenchyma, in which a 
loss of normal capillary bed results in fistulous connections between 
arteries and veins. Abnormal arteriovenous shunting contributes to 
high flow in focal vascular structures, especially in the tangled nidus 
and draining veins. BAVMs have an abnormal wall structure and 
are at risk of rupture, often resulting in catastrophic hemorrhage[1]. 
Most patients experience their first hemorrhage between the ages of 
10 and 60[2,3]. BAVMs are prevalent in about 0.01% of the general 
population[2,4], and the majority of those are sporadic. Approximately 
5% of BAVMs are familial or associated with other abnormalities, 
such as hereditary hemorrhagic telangiectasia (HHT) or Sturge-
Weber syndrome[5,6].
    Although BAVMs are thought to be congenital lesions with 
occasional de novo growth, the etiopathogenesis is still not fully 
understood. Accumulated studies on the molecular and cellular 
biology of BAVMs have indicated that inflammation plays an 
important role in the progression and rupture of BAVM[7-10]. 
Macrophages have been found in the vascular wall as well as 
adjacent brain parenchyma of unruptured, previously untreated 
BAVMs[10,11]. The expression of macrophage migration inhibitory 
factor (MIF), a key activation factor of macrophages, is increased in 
BAVM and is associated with proliferation and apoptosis of vascular 
cells[12]. Macrophages are thought to promote BAVM progression and 
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ABSTRACT
Brain arteriovenous malformation (BAVM) is an important risk factor 
for intracranial hemorrhage, especially in children and young adults. 
Inflammation has been implicated in BAVM lesion progression. 
Among various inflammatory components, macrophage is one of the 
major inflammatory cells present in human ruptured and unruptured 
BAVM and in the BAVM lesions of animal models. The role of 
macrophage in BAVM pathogenesis is not fully understood. In this 
review, we summarize recent studies on macrophages and introduce 
a non-invasive imaging protocol as a potential tool for detecting 
macrophage in BAVM and predicting the risk of BAVM rupture.
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rupture through secretion of pro-inflammatory cytokines (including 
tumor necrosis factor-α [TNF-α], interlukin-6 [IL-6], and vascular 
endothelial growth factor [VEGF]), that potentiate pathological 
angiogenesis and abnormal vascular remodeling[13].

MACROPHAGES AND BAVM LESION PRO-
GRESSION
The development of cerebral vasculature is a result of vasculogenesis 
and angiogenesis. Current evidence of BAVM etiology focuses 
primarily on abnormal angiogenesis, which occurs in two phases: 
(1) vascular endothelial cell proliferation and migration, in which 
VEGF and matrix metalloproteinase (MMPs) are key mediators; (2) 
vascular stabilization, during which endothelial cells form capillary 
tubes, intercellular junctions are strengthened, and pericytes and the 
precursors of smooth muscle cells are recruited to the newly formed 
endothelial tubes[14].
    Abnormalities during these two phases of angiogenesis can 
ultimately lead to the development of BAVM. Although the most 
well-known function of brain macrophages involves immunity and 
barrier genesis, the perivascular and blood-derived macrophages 
could also be involved in angiogenesis[15]. During the development 
period, macrophages interact with tip cells to chaperone vascular 
anastomoses[16]. LysM-Cre-mediated deletion of Notch1 in 
macrophages causes abnormal anastomoses between angiogenic 
sprouts in the retina[17]. Delta-like 4 (Dll4) positive tip cells interact 
in close proximity with Notch1-expressing macrophages at vascular 
branch points.
    Previous studies have shown that macrophages are the major bone 
marrow-derived cells (BMDCs) recruited to the VEGF-induced brain 
angiogenic focus[18]. Since the number of BM-derived macrophages 
in VEGF-induced brain angiogenic regions peaks earlier than 
angiogenesis, the macrophages likely play a role in the activation 
of angiogenesis. Further studies have revealed that 80% of the 
infiltrated BM-derived macrophages express MMP-9, indicating that 
macrophages’ involvement in angiogenesis occurs during vascular 
endothelial cell migration by activating MMP-9[18,19].
     Evidence obtained through analyses of surgically-resected BAVM 
suggests that BAVM is an active angiogenic and inflammatory lesion 
rather than a static congenital anomaly[9]. Endothelial proliferation 
increases in BAVM. BAVMs also have higher levels of MMP-9, IL-6, 
VEGF-A, and angiopoietin-2 (ANG-2)[20-22]. Ang-2, the predominant 
form of angiopoietin in inflamed tissues and a functional antagonist 
of Tie-2, promotes vascular destabilization[23]. In the presence of 
VEGF, the destabilized vessels undergo angiogenic changes and 
sprout to form new vessels[24]. Expression of Tie-2 is thought to be 
restricted to endothelial cells[23,25]. However, recent studies reveal 
that Tie-2-expressing monocytes and macrophages present in human 
peripheral blood as a response to elevated Ang-2 in inflamed tissues, 
where they then play an important role in modulating cytokines 
implicated in angiogenesis and inflammatory processes[26]. Therefore, 
the macrophages in BAVM are very likely to be associated with 
vascular destabilization. The role of Tie-2-expressing macrophages 
in BAVM pathogenesis would be a worthy subject of investigation in 
future studies.
    Current knowledge regarding the development of BAVM comes 
from animal models that were generated in the adult mouse through 
conditional deletion of hereditary hemorrhagic telangiectasia (HHT) 
causative genes, endoglin (Eng) and activin-like kinase 1 (Alk1, 
ACVLR1), in combination with focal angiogenic stimulation. HHT 
is an autosome-dominate disorder, and HHT patients have a higher 
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prevalence of BAVM development than the normal population. 
Adult mice with Eng or Alk1 deletion develop BAVM after brain 
focal angiogenic stimulation. The BAVM in these mice mimic many 
phenotypes of human sporadic BAVMs, and therefore are the most 
useful models for studying BAVM pathogenesis[27-30].
    Recent studies in bAVM animal have revealed that after angiogenic 
stimulation, similar degrees of cerebrovascular dysplasia developed in 
Eng+/- mice and wild-type (WT) mice transplanted with Eng+/−bone 
marrow (BM). In addition, the dysplasia in Eng+/− mice could be 
partially rescued by transplantation of WT BM[31]. This suggests that 
Eng deficiency in BM is sufficient to cause cerebrovascular dysplasia 
in the adult mouse after angiogenic stimulation. Macrophages are 
the major BM-derived cells detected in the brain angiogenic foci 
in mice[32], and in human surgical resected BAVM specimens with 
or without a history of hemorrhage or previous treatment with 
embolization or radiosurgery[9,10,18]. These findings suggest that 
macrophages are directly involved in BAVM development. However, 
deletion of Eng in LysM positive macrophages during the embryonic 
developmental stage did not cause BAVM formation even after 
brain focal VEGF stimulation[30,33]. Therefore, gene deficiency in 
macrophages alone might not be sufficient for BAVM formation. 
Macrophages, however, do not constitute a “pure” population, since 
they can be divided into distinct subgroups based on their functions 
and gene expression profiles[34]. It is possible that certain macrophage 
subgroups, rather than all macrophages, contribute significantly to 
BAVM development.
    Macrophages can undergo classical M1 activation or alternative 
M2 activation[35]. The M1 phenotype is characterized by the 
expression of high levels of pro-inflammatory cytokines, and 
reactive nitrogen and oxygen intermediates. M1 macrophages 
promote Th1 response, and have strong microbicidal and tumoricidal 
activity. In contrast, M2 macrophages are considered to exhibit 
anti-inflammatory activity, and play an important role in tissue 
remodeling and wound repair. Therefore, they may be crucial for 
tissue homeostasis to be restored[36]. 
    A study by Hasan et al[37] suggests that an imbalance of M1/
M2 macrophages plays a role in cerebral aneurysm rupture. In 
addition, iron overload induces macrophage polarization toward 
pro-inflammatory M1[38]. BAVM is an active inflammatory lesion, 
and about 30% of unruptured BAVMs have microhemorrhage, 
which increases iron deposition and pro-inflammatory mediators[7]. 
Future studies should explore the association between macrophage 
polarization and BAVM progression and hemorrhage.

MACROPHAGE AND BAVM HEMORRHAGE
Unfavorable outcomes of BAVM are attributed mostly to 
hemorrhage; however, not all cases of BAVM hemorrhage are 
symptomatic and caused by vascular rupture. Silent intra-lesional 
hemorrhages in BAVMs have been reported[39,40]. About 14-20% of 
BAVM patients without hemorrhagic history exhibit signs of prior 
hemorrhage[40]. Recent studies found that 30% of resected surgical 
specimens from patients with unruptured BAVMs and without 
history of hemorrhage contain microscopic evidence of hemosiderin 
deposition in the vascular wall or intervening stromal tissue[10,11]. 
Further analyses suggest a strong association between old silent 
hemorrhage and the risk of future symptomatic hemorrhage[10].
    The casual relationship between macrophage infiltration and 
clinically symptomatic hemorrhage as well as silent hemorrhage 
is still unclear. Silent hemorrhage and other inflammatory 
cytokines could activate and recruit macrophages into the lesions. 
Inflammation, including macrophage infiltration, could impair 



the vascular integrity and consequently induce silent or clinically 
symptomatic hemorrhage.
    The factors that initiate monocyte activation and macrophage 
infiltration are still unclear. Macrophage infiltration could be 
initiated during the early development of BAVMs, since CD68+ cells 
present in unruptured BAVM specimens that have no hemosiderin 
deposition. However, unruptured BAVMs with silent hemorrhage 
(iron deposition) tend to have more macrophages than those without 
it[11]. Histological examination of BAVM in patients and in mouse 
BAVM models demonstrates that the degree of hemosiderin or 
iron deposition (hemorrhagic product) correlates positively with 
the number of macrophages in the lesion[10,28]. These data suggest 
that microhemorrhage is one of the factors that induce macrophage 
infiltration in BAVM. 
    The BAVM vessels in an Alk1-deficient BAVM model have less 
mural cell coverage, increased fibrin and iron deposition, and small 
pockets of extravasated red blood cells in the brain parenchyma. 
Therefore, impaired vascular integrity could cause erythrocyte 
exudation and enhance macrophage infiltration in BAVM.
    Vascular destabilization induced by inflammation or macrophage 
infiltration could result in erythrocyte extravasation from vascular 
walls. The hemoglobin breakdown products from the extraverted 
erythrocytes will, in turn, attract more macrophages. This process 
results in chronic inflammation that drives abnormal vascular 
remodeling, which further impairs vascular integrity.

POTENTIAL USE OF MACROPHAGES AS A 
BIOMARKER FOR BAVM FUTURE HEMOR-
RHAGE
Since macrophages are associated with BAVM hemorrhage and 
rupture, the macrophage load might be used to identify BAVM at risk 
of rupture. A noninvasive means to detect macrophage infiltration 
is under development. Ferumoxytol (AMAG Pharmaceuticals, 
Lexington, MA), a superparamagnetic iron oxide nanoparticle 
approved for treatment of iron deficiency anemia in patients 
with chronic renal failure, is used as a contrast agent in MRI to 
track macrophages[41]. It stays in vessels for up to 72 hours after 
intravascular delivery, which is cleared by macrophages starting at 
24 hours after the delivery. Macrophages containing ferumoxytol 
can stay in tissues for an extended period and thus allow delayed 
detection by MRI[42]. Since it is superparamagnetic, ferumoxytol 
is hypointense on T2*-weighted images and hyperintense on T1-
weighted images. These iron particles were first used to detect 
inflammation in patients with aneurysm and then extrapolated to 
patients with BAVMs[42,43]. Pilot studies co-localized T2* gradient 
echo MR signal loss after ferumoxytol infusion with Prussian 
blue and CD68+ macrophages in the aneurysm domes and BAVM 
surgical specimens[44]. Thus, using ferumoxytol-enhanced MRI for 
assessing BAVM macrophage load is feasible and can be developed 
as a potential biomarker to assess the risk of BAVM rupture.
    A crucial finding regarding this new contrast in aneurysm is that the 
timing of ferumoxytol uptake in aneurysm walls reflects aneurysm 
stability and predicts the risk of rupture. Hasan et al[45] showed 
that all aneurysms exhibit early uptake (24 hours after infusion) of 
ferumoxytol on MRI ruptured in the next 6 months, whereas none 
of those with late uptake (72 hours after infusion) ruptured during 
the follow-up period. Therefore, the early signal change on MRI 
is thought to be associated with active inflammation and increase 
of pro-inflammatory macrophages, hence indicating a greater risk 
of hemorrhage. A further study demonstrated that ferumoxytol-
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enhanced MRI allows assessment of the effects of anti-inflammatory 
pharmacological interventions on cerebral aneurysm[46]. Although 
results are impressive, this method has not been tested in BAVMs.
    Imaging subtle changes in BAVM may be challenging because 
of high-blood volume in the nidus[47]. Residual intravascular 
ferumoxytol signal interferes with the detection of iron nanoparticles 
in the vascular wall or intervening stromal tissue. Delayed imaging 
at 5 days after ferumoxytol infusion might be an optimal protocol for 
BAVMs because it does not show as much of the intravascular tracer.
    Although current application of ferumoxytol-enhanced MRI in 
BAVM is limited, preliminary data suggest that this new contrast 
MRI is a promising technique for detecting macrophages and 
predicting BAVM rupture. Future studies will be needed to develop 
reliable imaging biomarkers, similar to those in aneurysm studies, 
in order to identify rupture-prone BAVMs, allowing relatively real-
time surveillance of the severity of intralesional inflammation and 
assessment of the therapy.

SUMMARY
The pathogenesis of BAVMs is complex and currently vague. 
Evidence obtained from HHT BAVM models and analysis of human 
BAVM specimens suggests that macrophages play a critical role in 
vascular integrity and vascular remodeling. Figure 1 summarizes 
the potential roles and mechanisms of macrophages in BAVM 
pathogenesis. Tracking macrophages is a promising and innovative 
method to predict BAVM rupture.
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Figure 1.Roles and mechanisms of macrophages in BAVM pathogenesis. 
Macrophages infiltrate the brain angiogenic region, which secretes 
inflammatory cytokines promoting abnormal vascular remodeling 
and impairing vascular integrity. Impaired vascular integrity increases 
vascular leakage or causes vessel rupture. Red blood cells get into the 
brain tissue, break down, and release hemoglobin and iron. Macrophages 
engulf the iron and process it into hemosiderin. Macrophages containing 
hemosiderin produce more inflammatory cytokines that further impair 
vascular integrity and promote lesion progression.
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