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INTRODUCTION
Acute myeloid leukemia (AML) is a hematological malignancy 
diagnosed by the presence of 20% or more blasts in the peripheral 
blood or bone marrow. Median age of presentation is 72 years (16-97 
years old). AML is still relatively difficult to treat. Early death (death 
within 30 days from diagnosis), excluding acute promyelocytic 
leukemia occurs in 19% of patients. Complete remission is achievable 
in 65% de novo AML and 41% secondary AML. Median overall 
survival for these patients was 1119 days for age 16-55 years (N=554), 
350 days for age 56-65 years (N = 437) and 80 days for patients aged 
76-89 year old (N = 968)[1]. 
    The French-American-British (FAB) classification of acute 
myeloid leukemias, the first classification established more than 40 
years ago, identifies eight subtypes (M0-M7) based on morphology 
and cytochemistry staining. 
    The WHO classification of AML is now used worldwide and 
provide guidelines for diagnosis as well as risk stratification. 
This classification utilizes multidisciplinary approaches and all 
available information including morphologic, cytochemical, 
immunophenotypic, clinical information as well as genetics in the 
diagnostic algorithm[2].
    Risk stratification begins immediately as it guides patient’s 
treatment regimen. Prognostic markers predict treatment related 
mortality (TRM), resistance to chemotherapy or survival. TRM 
relates to patient characteristics and general health while drug 
resistance or overall survival is characteristic of the AML clone. 
Patient related factors such as age, performance status, co-morbidities 
and AML-related factors such as white blood count, transformation 
from MDS , therapy-related AML, genetic abnormalities all influence 
patient’s treatment outcome (reviewed in Dohner et al[3], 2010). 
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ABSTRACT
Acute myeloid leukemia (AML) results from the over-proliferation 
of progenitor cells of the myeloid lineage in the bone marrow. It is a 
heterogeneous disease that is aggressive and difficult to treat. AML 
diagnosis is based on clinical as well as laboratory investigations. 
Risk stratification is important to assess risk of relapse. Current 
guidelines for risk stratification are dependent on identification 
of genetic aberrations particularly chromosomal translocations 
and gene mutations. Though these are observed in the majority of 
patients, the best treatment regimen remains elusive. AML blasts 
are assumed to have transformed from a normal counterpart and 
maintains many normal regulatory functions. Early features such 
as stem cell properties has long been proven to be linked to early 
relapse in AML. Leukaemia stem cells (LSC) are identified by high 
CD34 and negative CD38 expression. Aberrant expression of a third 
marker such as Thy-1/CD90 negativity, expression of CLL-1 and 
IL-3R (CD123), intermediate levels of aldehyde dehydrogenase  
and co-expression of common chromosomal translocation may 
be used to distinguish from normal hematopoietic stem cells. In 
vitro characteristics of AML blasts such as proliferation, survival 
or response to treatment are also able to predict patient response to 
therapy, replicative of its interaction with the microenvironment. 
These potential prognostic markers are well studied but are currently 
not considered in patient management.
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    Recurring cytogenetic abnormalities is the single most valuable 
prognostic factor in AML and is able to categorize patients into: 
    (1) Favorable: those with t (8;21); RUNX1-RUNX1T1, inv (16); 
CBFB-MYH11 or t (15;17); PML-RARA; 
    (2) Intermediate: those with no abnormality/ cytogenetic normal 
(CN), +8, 11q23, +21, del(7q), del (9q), +22, or other numerical and 
structural changes; 
    (3) Unfavorable: complex, -7, abn(3q), del(5q) or -5. 
    Translocations t(8;21), t(15;17), inv(16)/t(16;16) and 11q23 
constitute 34% to 47% of pediatric and 21% to 28% of adult 
cytogenetic abnormalities. Trisomies, deletions and complex 
karyotypes contribute to another large percentage of adult AMLs[4]. 
    While these abnormalities have prognostic significance, many do 
not correlate with FAB classification. Translocation t(8;21)/AML1 
(RUNX1)-ETO is one of the most common karyotypic abnormalities 
in AML and confers a favorable prognosis. It is also predominantly, 
but not exclusively, associated with AML M2. AML1-ETO was 
found in 3% (1/32) of AML M1 and 25% (8/32) of M2[5]. Others 
found this translocation in 12.5%[6] and 22%[7] of M2. 
    Approximately, 40-42% present with normal cytogenetics, 
CN-AML[8,9] The latest WHO classification (2008) recommends 
mutational studies for NPM1, CEBPA, and FLT3 in cytogenetically 
normal AML. Other important diagnostic and prognostic markers in 
AML are RUNX1, KIT, WT1, and MLL[2]. 
    “Mutated NPM1 is found in 50% to 60% of cases of 
cytogenetically normal AML, and when only NPM1 mutation status 
is considered, approximately 50% survival at 4 years is observed. 
FLT3-ITD mutation is found in approximately 30% to 40% of cases 
of cytogenetically normal AML, and when only the FLT3-ITD 
status is considered, survival rate of only 20% to 25% at 4 years was 
achieved. Mutations of CEBPA are found in approximately 15% of 
cytogenetically normal AML cases and these patients have a nearly 
60% 4-year survival rate. When NPM1 and FLT3-ITD status are 
considered together, patients who have mutated NPM1 and are FLT3-
ITD–negative have a 4-year survival similar to that of the CEBPA-
mutated cases at approximately 60%, whereas the remaining cases, 
being either NPM1 wild-type or FLT3-ITD–positive or both, have a 
dismal 30% survival rate at 4 years” (extracted from[2]). KIT mutation 
is common in core-binding factor AML, that is, those with rearranged 
RUNX1 and CBFB genes. However, a higher relapse rate and lower 
overall survival is noted when mutated KIT is present[2].
    By integrating mutational studies such as internal tandem 
duplication in FLT3 (FLT3-ITD), partial tandem duplication in MLL 
(MLL-PTD) and mutations in ASX1 and PHF6, CEBPA, IDH1, 
IDH2 and NPM1, the intermediate category (forming 63%) could be 
realigned, increasing the favorable category (initially 19%) to 26% 
and the unfavorable category (initially 18%) to 39%. The percentage 
in the intermediate group drops to 35%. Three-year overall survival 
for favourable, intermediate and unfavourable were achieved in 85%, 
42% and 13%, respectively[10]. 
    The European LeukemiaNet is represented by an international 
expert panel to provide updated recommendations for the diagnosis 
and management of AML in adults (excluding acute promyelocytic 
leukemia). To better compare data among studies, a standardized 
reporting system for genetic abnormalities was proposed which 
includes data from cytogenetic analysis and mutational analyses of 
NPM1, CEBPA and FLT3 genes. Based on these genetic changes, the 
European LeukemiaNet established the Favorable, Intermediate I, 
Intermediate II and Adverse risk groups[3].
    Current conventional treatment of AML is still largely 
chemotherapy-based. Treatment starts with induction therapy which 

Abdullah M. Unapplied markers in AML

96© 2016 ACT. All rights reserved. 

consists of intensive therapy with anthracycline and cytarabine given 
to all patients except older patients (>60 yr) with adverse cytogenetic 
risk. The purpose of induction therapy is to achieve complete 
remission (CR). Postremission therapy for patients with favourable 
genetic risk is consolidation therapy of intermediate dose cytarabine. 
Cure rates among these patients are 60-70%. 
    Patients with intermediate or adverse risk are considered for 
allogeneic hematopoietic cell transplantation (HCT) if a donor is 
available. A HLA-matched graft is generally preferred. The HCT 
procedure provides the strongest antineoplastic therapy from 
pretransplantation conditioning and the immunologic antileukemic 
graft-versus-leukemia effect. Even though patients with intermediate-
risk genetic factors may fare better, without HCT the outcome 
remains poor with cure rates of only 10-15%. The outcomes 
in patients who are older than 60 years of age remain highly 
unsatisfactory[11].
    Relapse rates in AML patients <60 years old in complete 
response according to the European LeukemiaNet risk groups of 
good, intermediate, poor and very poor were 35-40%, 50-55%, 
70-80% and >90%, respectively. HSCT is expected to reduce 
relapse rate in these patients by half[12]. Autologous hematopoietic 
stem cell transplantation is considered an alternative option for 
postremission therapy in patients with favourable- and intermediate-
risk cytogenetics, whereas it cannot be recommended in patients with 
high-risk cytogenetics[3]. 
    Postremission monitoring of minimal residual disease (using 
quantitative polymerase chain reaction) initiates quick response to 
provide salvage therapy including allogeneic hematopoietic cell 
transplantation by molecular detection of persistent or relapse AML 
to improve outcome.
    Other than cytotoxic chemotherapy and stem cell transplantation, 
risk stratification based on cytogenetics and molecular markers which 
provides the means to assess risk of relapse, has made it possible 
for targeted therapy. Recurring genetic changes affecting various 
genes including NPM1, CEBPA, RUNX1, MLL, FLT3, KIT and 
RAS are recommended for inclusion in diagnosis. However, these 
genetic aberrations do not encompass all patients nor represent 
all changes found in AML. In fact, many other genetic changes 
have been identified including epigenetic changes[13]. Furthermore, 
mutational changes continue to occur between a patient’s diagnosis 
and relapse. The uniqueness of these aberrant patterns to each 
patient has made it apparent that successful therapy will depend on 
personalized treatment most likely in combination with conventional 
chemotherapy. 
    The two-hit model of leukaemogenesis identifies two classes 
of mutations where class I mutations in tyrosine kinases results in 
enhanced proliferation or survival (e.g. FLT3-ITD, FLT3-TKD, KIT, 
RAS, PTPN11, JAK2) while class II resulting from loss of function 
of transcription factors and needed for differentiation, effects a block 
in differentiation (e.g. PML-RARA, RUNX1-RUNX1T1, CBFB-
MYH11, MLL fusions, CEBPA and may be NPM1)[14]. While not 
all have drugs developed, a large number of targeted drugs with 
anti-cancer potential are available. Ex vivo testing on AML samples 
indicated tyrosine kinase inhibitors, MAP-ERK kinase inhibitors, 
rapalogs, as well as AKT inhibitors and mTOR inhibitors are 
potentially suitable[15]. 
    However, targeted therapy is not without challenges. It is 
increasingly evident that many molecular targets may not, in the end, 
be clinically relevant. Targets that are truly critical to the survival 
of the cell turned out to be not the only check point as cancer cells 
are able to escape by choosing an alternative pathway. Testing 



    Studies comparing expression of these markers showed CD34 was 
expressed in the majority of FAB subtypes, 96% (M0), 79% (M1), 
71% (M2), 71% (M4) with lesser cases in M3 (14%) and M5 (47%)[27]. 
Another study showed CD34, HLA-DR and CD117 were expressed 
in 100%, 100% and 75% of M0; 71%, 66% and 69% of M1; 82%, 
86% and 89% of M2; 57%, 94% and 80% of M4; 86%, 100% and 
100% of M4Eo and 20%, 100% and 16% of M5, respectively[28]. 
These indicate many cases in the subroups express early markers. 
CD133 expression correlated with CD34 but not FAB subtype[29]. 
CD133 was also significantly correlated with CD13, HLA-DR, CD7, 
CD3 and TdT[30]. 
    Studies on prognostic value showed expression of CD34 correlated 
with lower rates of complete remission in AML. HLA-DR and 
CD117 expressions also correlated with reduced complete remission 
rates (reviewed in Mason et al[31], 2006). Initial study on CD133 
expression in AML patients (n=102) concluded CD133 was not 
useful as a prognostic marker in AML[29]. Another study however, 
observed in AML (n=30) with CD133 expressions were associated 
with a significantly lower overall survival[30]. 
    Expression patterns among risk groups observed CD34, HLA-
DR and CD117 expressed in 95%, 100% and 68% of Good; 57%, 
82%and 75% of Intermediate and 81%, 87% and 78% of Poor risk 
group[28]. 
    Thus, undifferentiated AML blasts cells have a poorer outcome but 
the early feature of these cells are not limited to the M0 subgroup. 
Furthermore, expression of early markers is associated with poor 
outcome and are also dominant in other subgroups. Thus, another 
more suitable entity is desired.
    Leukemia stem cell (LSC) was the first cancer stem cell to be 
described[32]. Xenotransplantation is the gold standard model for 
characterizing leukemic stem cell where leukemia initiating cells 
(LIC) have the potential for self-renewal. LIC induces AML in non-
obese diabetic mice with severe combined immunodeficiency disease 
(NOD/SCID) and is termed SCID-IC. SCID-IC were exclusively 
CD34++CD38-[33]. In clinical settings, inclusion of CD34, CD38, 
CD117, CD133, HLA-DR are not mandatory in the AML diagnosis 
panel[3]. The CD34+CD38- pattern of expression was not reported in 
many of the studies on M0[10,23-27,34,35].
    CD34+CD38- cells were observed in all subtypes of AML 
analysed[33]. However, cases negative for CD38 are low; 12.5% (M0), 
15.5% (M1), 13.8% (M2), 4.2% (M3), 37.5% (M4) and 25% (M5)
[36] where positive cases have >20% positive blasts detected. Among 
56 AML analyzed, only one case fitted the CD34+CD38- profile and 
was of the FAB M4 subtype[37]. 
    Nevertheless, AML cells from various FAB subtypes (M1, M2, 
M4 and M5) engrafted at high levels in the SCID- leukemia mice 
reproduced FAB morphological and features characteristic of the 
donor’s disease[32]. Immature leukaemic blast colony-forming units 
(AML-CFU), detected in in vitro cultures, were present in all donor 
samples regardless of FAB classification, after transplantation in 
SCID mice. A search for a leukemia stem cell more immature than 
the AML-CFU determined that only the CD34+CD38- fraction 
gave rise to leukemia in transplanted mice[32]. Various other studies 
supported the presence of LSC in all FAB subtypes[38,39] with as 
much as 60%, 44%, 58% and 67% in M1, M2, M4 and M5 cases, 
respectively[40]. 
These dormant immature cells with high CD34+(CD38-) expression 
are thought to cause early relapse which contributes to poor 
survival[41] due to failure of current therapies to adequately target 
LSC[42]. Higher frequencies of CD34+CD38- LSC at diagnosis 
correlated with poor survival in both adult[41] and paediatric[43] AML. 

of multiple molecular targets may be an option but will need to 
circumvent challenges in designing clinical trials with more than a 
single drug company within the same study. Presently, it is not clear 
how the safety and efficacy of such highly personalized therapies can 
be appropriately assessed when taken to its extreme, personalized 
therapy will ultimately result in sample size of only 1[16]. 
    Historically, investigations on mechanisms of relapse or drug 
resistance extended beyond genetic aberrations and included 
biological characteristics that also provided significant clinical 
impact. The following discusses several of these markers.

EARLY PROGENITORS AND LEUKEMIA STEM 
CELLS
The 2008 WHO classification includes a category as AML, not 
otherwise specified (NOS), which is based on morphology/
cytochemistry and estimated to account for 25%-30% of all cases[2]. 
Cases with history of myelodysplastic syndrome, simultaneous 
evidence of myelodysplasia or complex and unbalanced cytogenetic 
changes are excluded from this grouping[10].
    Subcategories here are similar to the earlier French-British-
American classification of AML based on cell maturity i.e. AML 
with minimal differentiation (M0); AML without maturation (M1); 
AML with maturation (M2); acute myelomonocytic leukemia (M4) 
and acute monoblastic/monocytic leukemia (M5). In AML cases, 
distribution of these subtypes were M0 (mean 6%, range 5%-8%), 
M1 (25%, 16%-27%), M2 (28%, 27%-34%), M4 (21%, 13%-27%), 
M5 (15%, 12%-26%) including M6 and M7, excluding M3 [17]. 
Thus, the earliest progenitor candidate is predicted to be M0, forming 
the smallest subcategory.
    M0 is diagnosed by less than 3% myeloperoxidase/Sudan Black B 
by cytochemistry and immunophenotyped positive for CD13 and or 
CD33 but negative for B and T lineage markers[18]. NPM1 mutation 
is not observed in FAB M0 type[19]. FLT3/ITD mutations are also not 
observed in M0 type (FAB classification) but more frequent in the 
other groups in particular M3[20]. CEBPA mutations, an independent 
prognostic factor for improved outcome in AML, are significantly 
more common in older patients and patients with FAB M1 and M2 
and normal karyotype but not observed in FAB M0[21,22]. A total of 
45%-71% of M0 have normal cytogenetics in contrast to 28% in M3 
and 64% in M4[7].
    The M0 subgroup was found to have a significantly lower 5-year 
survival rate (20.8%) when this FAB type was compared with M1 
(32.2%), M2 (38.9%) M3 (61.5%), M4 (26.4%), M4Eo (56%) and 
M5 (22%)[4]. With the newer classification, M0 cases achieved 65% 
complete remission, 8% 5-year survival rates and median overall 
survival was 10.6 months[10]. In a larger study, among the FAB 
subgroups, complete remission was achieved in 63% (M0), 74% 
M1, 78%M2, 76% M4, and 80% M5 cases[17]. After multivariate 
adjustment, FAB M0 was independently associated with worse 
overall survival (OS) relative to M1, M2, M4, and M5[17]. Thus, 
the early progenitor subgroup appears to have a poorer outcome 
compared to others. However, early progenitor features are not 
limited to this group.
    Precursor markers used in the diagnosis of AML include 
the stem cell marker CD34, CD38, CD117, CD133, HLA-DR, 
as recommended by European LeukemiaNet (ELN) 2010 for 
immunophenotyping and diagnosis of early cells[3]. Expression of 
CD34 and HLA-DR ranged from 83% to 100% M0 cases. CD117, 
a protein preferentially expressed on immature myeloid leukemia 
cells[23], ranged from 50% to 80% in M0 cases[23-26].

97 © 2016 ACT. All rights reserved.

Abdullah M. Unapplied markers in AML



    The SCID-LIC however, shares the CD34+CD38- expression 
pattern similar to normal stem cells. Thus, various studies have 
identified markers that differentiated these two groups including lack 
of expression of Thy-1/CD90[38], expression of CLL-1[39] and IL-3R 
(CD123)[44], intermediate levels of aldehyde dehydrogenase[42] and 
co-expression of common chromosomal translocation[40] in the AML 
cases. These new phenotypes correlated with poor survival[39,40,42,44].
    Global gene expression studies on LSC were designed to identify 
unique signatures of prognostic value. However, the LSC were 
largely derived from murine models induced with Meis1 and 
Hoxa9[20,45] compared between CD34+CD38- with CD34+CD38+ 
blasts within the AML cases[46] or compared with normal 
CD34+CD38- hematopoietic stem cells, HSC[47,48]. Comprehensive 
transcriptomic analysis to uncover genetic programs that maintain 
LSC in the self-renewing compartments in AML revealed gene 
expression patterns more akin to embryonic rather than adult stem 
cells. This was observed in the murine models of human leukemia 
induced by MLL-AF9 oncogene[49] as well as other cancers associated 
with poor prognosis (reviewed in Cleary, 2009[50]). Thus, LSCs which 
are considered to originate from hematopoietic stem or progenitor 
cells, not only adopt the regulatory machinery operating in normal 
HSCs but also establish their own mechanisms against apoptosis and 
senescence. Literature on the genetics of LSC remains few. 

IN VITRO CHARACTERISTICS OF AML BLASTS
LSC cells engrafting NOD/SCID mice were also found to be the 
very cells that populate long term culture systems[38]. Self-renewal 
potential of LSC is demonstrable by colony forming blasts units 
(CFU-blast). CFUs were achieved by growing samples on semi-solid 
methylcellulose culture system supplemented with growth factors 
such as EPO, IL-3, IL-6, G-CSF, GM-CSF and Steel Factor[38] or with 
PHA-LCM. Whole native AML population or selected cells sorted 
or purified based on cell surface antigen expression may be used in 
cultures. 
    Cell suspension cultures (with or without GF autocrine) and pre-
established irradiated human marrow feeders (with or without added 
exogenous growth factors) were other culture conditions to maintain 
LSCs. Suspension culture assays may also be carried out in serum 
free medium with similar recombinant growth factors[38]. Duration 
of cultures may be long-term, from 2-8 weeks or short-term, up 
to 7 days. These methods were used to observe for spontaneous 
proliferation or spontaneous apoptosis. Some patients’ samples 
exhibited spontaneous proliferation while others can only proliferate 
in the presence of exogenous growth factors (reviewed in Bruserud et 
al[51], 2001). 
    By maintaining cells for 4 weeks or longer in suspension culture 
in the presence of growth factors or culture on stroma, leukemia 
progenitor with higher proliferative potential could be separated. 
Self-renewal potential were then determined by CFU counts which 
showed heterogeneity and progenitor hierarchy among AML 
samples[52].
    The capacity for self-renewal in AML clones was shown early on 
as an important contributor to outcome in AML including successful 
remission induction and duration of survival. The number of CFU-
blast induced from AML cells depleted of T cells and stimulated with 
PHA-L[53,54] or by autonomous growth[54] was inversely correlated 
with remission induction[53,55] and duration of survival[53,54,55].
    AML blasts in suspension cultures also utilized other 
detection methods including incorporation of tritiated thymidine 
incorporation[56] and methyl tetrazolium (MTT) assay[57,58] to 
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determine rate of proliferation and survival, respectively. High levels 
correlated with poor response to chemotherapy[56,57] and short duration 
disease free survival[56,58]. Contrasting results were obtained in 
another study where spontaneous proliferative determined by tritiated 
thymidine incorporation was significantly higher in favourable 
karyotypes compared to cases with unfavorable cytogenetics[59]. 
This group used IMDM supplemented with fetal calf serum (FCS) 
as culture media. Lowenberg et al[56] (1993) and our group[57] used 
serum free media while Norgaard et al[57] (1996) used RPMI with 
FCS as culture media. The results here did not correlate with FAB 
subgroups. 
    Thus, experimental models that utilize short-term culture of total 
native AML populations are still important and relevant in the study 
of AML and they are also the experimental models with the best 
documented clinical relevance[51].
    Recently, a mathematical model was developed to assess the 
properties of LSC in leukemia samples. The proliferative, apoptotic 
and self-renewal principles of normal and leukaemic progenitors 
at the levels of hematopoietic stem cells (HSC), hematopoietic 
progenitor cell (HPC) and postmitotic mature cell and their regulation 
and responses to cytokines were the basis of the model. LPC was 
assumed to proliferate faster than LSC while LSC had higher self-
renewal rates. The system was applied to the clinical data of 41 
patients with relapsed AML[60]. As expected, considerable inter-
individual heterogeneity of LSC properties was observed among 
patients. More importantly, high self-renewal rate was required for 
leukemia relapse whereas fast proliferation rate was not always 
required. Nevertheless, LPCs play a major role as they speed up 
production of leukemic blasts[60]. Other mathematical models has 
been established to characterize stem cells based on signaling 
interaction with the environment[61] and determine how stem cells 
coordinate homeostasis through cross-talk between genetic and 
epigenetic regulation[62]. Mathematical and computational techniques 
were also used to gain insights into the biology of cancer stem 
cells in initiation, progression and response to treatment in chronic 
myeloid leukaemia (reviewed in Michor, 2008[63]), to determine how 
mutations deregulate stem cell homeostasis and induces cancer[64], 
how kinetics of cancer stem cell sustain growth[65] and to strategise 
how to eliminate cancer stem cells[66]. The lesser requirement for 
resources and lower complexity compared to clinical trials and 
laboratory procedures may make mathematical modeling a niche 
to guide in drug selection and prediction of treatment outcome in 
personalized medicine. 
    The balance between renewal and differentiation can be altered 
by exposing blast populations to various growth factors in culture[67]. 
In vitro assays provide an excellent method to screen for potential 
agents with differentiation induction potential. The best example was 
the use of all-trans retinoic acid (ATRA) on acute pro-myelocytic 
leukemia which also sensitized these cells to intensive chemotherapy. 
Other agents such as cytokines also induces leukaemic cell 
differentiation demonstrated in cells cultured in vitro, making it a 
promising therapeutic approach (reviewed in Bruserud et al[68], 2000 ). 
Various chemotherapeutic drugs target cells in division. Proliferative 
activity of AML blasts were significantly higher in favourable 
karyotypes compared to unfavourable karyotypes. Exposure to GM-
CSF significantly increased proliferation in normal and unfavarouble 
groups compared to favourable karyotype[59]. 
    CD34+ expression of cells from AML bone marrow were 
significantly reduced following incubation with a cytokine mix 
without affecting viability in all samples analysed. In contrast, this 
cytokine mix increased CD34-positive cells from all healthy donors 
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expressed in approximately 45% of AML cases. Quantitative analysis 
of bone marrow levels differentiated three groups where lower copies 
were associated with better treatment outcome[75]. PRAME is another 
potentially important marker for MRD monitoring[76]. Its value in 
early post-induction is still unknown. Bone marrow evaluation 
of cytokine transcripts after 5 days induction therapy indicated 
interleukin-1β in particular may be able to identify AML resistant to 
chemotherapy[77].
    Assessing bone marrow however, is invasive and rather painful. 
Methods that could reduce this need would be advantageous to 
patient comfort. WT1 mRNA levels in peripheral blood of patients 
after achieving complete remission predicted relapse after CR[78]. 
Studies evaluating specific markers expressed in the peripheral 
blood early during induction therapy are not available. Our study 
indicated the potential of phosphorylated-Bad, a signaling mediator 
of the MAPK and Akt pathways in identifying AML resistant to 
chemotherapy early during induction therapy, day 3- day 7[79].

CONCLUSION
Thus, various factors remain that are not considered in diagnosis or 
prognostication of AML. Of concern is current classification provide 
researchers with very little basis to move forward in understanding 
the biology of AML. Convincing results exists for the role of LSC 
in inducing early relapse. Laboratory diagnosis should include 
detection of the CD34+D38- population and a supporting aberrant 
marker. Clinical trials could be conducted to tailor inclusion of a 
differentiation agent.
    Relapse is not only dependent on estimation of the total number 
of LSC at diagnosis but may be influenced by the dynamics of LSC 
and interaction with its microenvironment. Chemotherapy may alter 
the microenvironment accelerating the return of a small number of 
surviving LSC or may cause it to remain dormant after cessation of 
therapy implied by division kinetics as well as self-renewal rates of 
these cells. In vitro cultures of AML blasts in the right media and 
growth factors may be used to select for the best therapy to target the 
unique biology of the cells. There is suggestion that both drugs and 
growth factors should be assessed for their effects on self-renewal as 
part of preclinical testing[67].
    Mathematical approaches will benefit by advancing the effort to 
learn more of the hematopoietic system and its diseases in advance 
of available experimental methods and may be useful as a tool for 
personalized medicine. 

CONFLICT OF INTEREST
The author declare no conflicts of interest. 

REFERENCES 
1	 Juliusson G, Antunovic P, Derolf A, Lehmann S, Möllgård L, 

Stockelberg D, Tidefelt U, Wahlin A, Höglund M. Age and 
acute myeloid leukemia: real world data on decision to treat and 
outcomes from the Swedish Acute Leukemia Registry. Blood 
2009; 113(18):4179-87.

2	 Vardiman JW1, Thiele J, Arber DA, Brunning RD, Borowitz 
MJ, Porwit A, Harris NL, Le Beau MM,Hellström-Lindberg E, 
Tefferi A, Bloomfield CD. The 2008 revision of the World Health 
Organization (WHO) classification of myeloid neoplasms and 
acute leukemia: rationale and important changes. Blood 2009; 
114(5):937-51.

3	 Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, 
Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-

tested. The cytokine mix consisted of interleukin (IL)-1beta, IL-3, 
IL-6, stem cell factor (SCF), erythropoietin (EP) with granulocyte 
macrophage/colony-stimulating factor (GM-CSF)[69]. Gemtuzumab 
ozogamicin (Mylotarg) resulted in a 34% reduction in CD34+CD38-
CD123+ LSPC number, whereas normal CD34+CD38- hemapoietic 
stem cells were insensitive to the agent[70]. Another agent, protein 
kinase C agonist prostratin induced differentiation of human 
myeloid leukemia cells and enhanced cellular differentiation by 
chemotherapeutic agents[71].
    Other examples of differentiation inducing agents include: (1) 
vitamin analogs: retinoids and vitamin D derivatives (2) cytokines: 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
granulocyte colony stimulating factor (G-CSF), interferons, tumor 
necrosis factor (TNF) (3) polar-aplanar compounds: hexamethylene 
bisacetate (HMBA) (4) histone deacetylase inhibitors: trichostatin 
(TSA), phenylbutyrate,61 apicidin,62 depsipeptide (FR901228)63 (5) 
inhibitors of DNA methylation: 5-aza-2´deoxycytidine64 (6) cyclic 
AMP analogs: 8-Cl-cAMP, dibutyl cAMP (7) chemotherapeutic 
agents: aclarubicin, cytosine arabinoside (Ara-C), hydroxyurea 
and even (8) medicinal plant-derived products and plant growth 
regulators (reviewed in Wang et al[72], 2003).
    A drug sensitivity test performed in the laboratory prior to 
clinical treatment, similar to the approach of antibiotic susceptibility 
testing in microbiological disease, has long been an aspiration in 
AML. Pemovska et al[15] (2013) tested drugs used in conventional 
chemotherapies including daunorubicin, idarubicin, cytarabine and 
also molecularly targeted drugs already tested and approved for non-
AML indications (eg: Dasatinib, Trametinib and Temsirolimus) and 
64 new investigational agents (eg: Foretinib, Dactolisib and MK-
2206). 
    Combining genomic studies and ex vivo drug sensitivity and 
resistance testing (DSRT) made it possible to not only identify the 
most appropriate drug but also its anti-cancer selectivity from testing 
on normal cells. Deep molecular profiling uncovered mechanisms 
of drug response and resistance by monitoring therapy responses 
at the level of individual AML subclones. Despite heterogeneity in 
genotype and phenotype, similar sensitivity drug patterns for certain 
drug classes were observed in these AML samples. Thus, in vitro 
characterization may also assist in challenges faced in personalized 
treatment[15].

EARLY POST-INDUCTION MARKERS
Detecting early signs of chemo-resistance is valuable for successful 
remission induction. Many studies have reported delayed clearance 
of blasts is predictive of a worse prognosis (discussed in Rowe et 
al[73], 2010). Residual leukemia present on day 14 bone marrow can 
be an early indicator of a highly resistant clone. However, it may also 
represent a slower response to therapy. It is standard practice in some 
groups to repeat an identical course of induction therapy at that point. 
Long-term outcome was similar to the group achieving complete 
remission with one cycle even when given identical post-remission 
therapy[73].
    Identifying residual blasts is subjective to the examiner as 
morphological appearances can be difficult to interpret. Detection of 
minimal residual disease (MRD) is currently recommended in the 
management of AML, however the best method to use to measure 
MRD is still a matter of debate[74]. The application of MRD will not 
be discussed here as there are many publications on this subject. 
    Specific and sensitive markers detected post-induction are being 
investigated. Wilms' tumor gene 1 (WT1) is a gene commonly over-
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