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ABSTRACT
Proteins are structurally complex biomolecules which regulate 
fundamental processes of the cellular systems. An integrated network 
of molecular chaperones, ubiquitin proteasome system and autophagy 
regulate the cellular protein quality and maintain the balance between 
folded and unfolded proteins. However, several chronic challenges 
such as aging related physiological changes, diseases and certain 
stress conditions interfere with protein functioning. This leads to 
formation and accumulation of potentially toxic proteinaceous species 
in the cellular system. It is increasingly clear now that impairment(s) 
of protein quality control system is one of the common mechanisms, 
which leads to onset and progression of various human diseases 
including neurodegenerative disorders. Occurrence of cellular 
fibrillar protein aggregates marks the signature feature shared by 
most of these disorders. Molecular chaperones are the key regulators 
of the protein quality control machinery which have been identified 
as modulators of neurodegenerative diseases. They have been found 
to play essential role in eliminating toxic proteins by either inhibiting 
or promoting the process of aggregate formation. This review focuses 
on elucidating the role of chaperone-mediated protein folding and 
its application as a promising choice for development of novel 
therapeutic strategies against neurodegenerative disorders.
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INTRODUCTION
Proteins are delicate, versatile and structurally complex biomolecules 
which regulate fundamental processes of the cellular systems. They 
are synthesized as long stretches of amino acid chains and in order 
to achieve the functional state each polypeptide chain must be folded 
into a unique 3-dimensional structure[1]. However, proteins have 
a very narrow range of thermodynamically stable physiological 
environment inside the cells to achieve correct folding and to 
function[2]. In addition, several chronic challenges such as aging 
related physiological changes, diseases and certain stress conditions 
also interfere with protein functioning[2]. Therefore, how the cells 
manage their proteome and ensure their metastable conformations 
to retain the conformational flexibility in the ever changing cellular 
environment has emerged as a fundamental question in contemporary 
biomedical research.
    Cellular system has developed a specialized folding machinery 
which has been optimised to function in co-operation with ribosome 
dependent protein synthesis system[3]. However, it has been estimated 
that only a fraction of the newly synthesized protein accomplish 
the functional folded state and others do not attain the ordered 
3-dimensional structure, but have the potential to adopt folding 
conformation only after interaction with some folding substrates[4]. 
In a crowding environment where the cytosolic protein concentration 
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reaches upto ~300-400 gram/litre (gl-1), the folding becomes more 
challenging and the proteins are at great risk to adopt aberrant 
folding and aggregation[5]. This leads to formation and accumulation 
of potentially toxic proteinaceous species in the cellular system[6]. 
Therefore, cells have to routinely cope up with the problems of 
misfolded proteins owing to the rapidly changing cellular homeostasis 
associated with varying physiology and stressful conditions[7]. In 
view of the above, cellular system has developed a well-balanced 
protein quality control system to maintain proteome homeostasis 
which is essential for its normal functioning. An integrated network 
of molecular chaperones, ubiquitin proteasome system and 
autophagy system regulate the cellular protein quality and maintain 
the balance between folded and folding proteins[8]. Chaperones, in 
cooperation with their regulators assist de-novo or refolding of the 
nascent and denatured proteins respectively, along with selective 
removal of the irreversibly folded and aggregated proteins[9,10]. It has 
been well demonstrated that impairments of protein quality control 
system is one of the common mechanisms which leads to onset and 
progression of various human diseases including neurodegenerative 
disorders[11,12]. Present article has been divided in two sections: first 
section provides a brief overview of the chaperone based cellular 
protein folding and quality control machinery, and second part 
focuses on the impact of impaired folding machinery on onset and 
progression of neurodegenerative disorders. In addition, some recent 
findings on the ability of chaperones to suppress such fatal disorders 
have also been discussed.

MOLECULAR CHAPERONS IN PROTEIN 
FOLDING AND QUALITY CONTROL
Physiological and environmental stress such as aging, diseases, heat, 
heavy metal ions and UV exposure induce damages to cellular proteins 
and accelerate imbalances in the cellular proteome[13]. Molecular 
chaperones are protective proteins which assist efficient folding/re-
folding of newly synthesized and denatured proteins, without being 
part of the final confirmation of the native protein[9]. Originally, 
chaperons were identified as proteins that were overexpressed in 
response to stress[14]. Later, functions of these proteins were also 
found to be essential to maintain the balance between de-novo folding 
and regulation of degradation pathways under normal physiological 
conditions. Nevertheless, despite of its constitutive levels, the 
expression and synthesis of these proteins greatly increases during the 
course of stress and therefore, these group of proteins are also known 
as heat shock proteins (Hsps)[7]. Classified according to the molecular 
weight and homologies, cells consist of several classes of chaperones 
such as Hsp40, Hsp60, Hsp70, Hsp90, Hsp100 and the small Hsps 
(sHsps)[15]. In the cellular system, three classes of chaperones - 
Hsp70, Hsp60 and Hsp90 - largely participate in de-novo folding and 
refolding of proteins in an ATP dependent manner[16]. 
    Chaperones start functioning from the point where stretches of 
nascent polypeptide chain get released from the polyribosomes[17]. 
Molecular chaperones recognize hydrophobic residues or unstructured 
peptide bonds exposed by non-native proteins. Such hydrophobic 
residues or unstructured peptide bonds are buried inside during native 
confirmation. Several chaperones such as trigger factors, ribosome 
binding Hsp70s, nascent chain associated complex (NAC), ribosome 
associated complex (RAC) etc. bind to the nascent proteins and 
assist co-translational folding[3]. However, co-translational folding is 
possible only for small and single domain proteins and majority of 
the cellular proteins are multi-domain and large. When such proteins 
are released in the cytoplasm, exposed non-native structures in the 

nascent proteins trigger self-aggregation[6]. Hsp70 along with several 
other molecular chaperones plays a central role in identification and 
stabilization of such newly synthesized unfolded proteins. Hsp70 is 
a ubiquitously expressed, stress inducible multifunctional chaperone 
which mediates a variety of biological processes, including folding, 
targeting, degradation and interactions of proteins[16]. Hsp70 consists 
of a N-terminal ATP-binding domain (NBD) and a substrate binding 
domain (SBD) near the C-terminal lid region[18]. Co-factors of 
Hsp70 include Hsp40/DnaJ family proteins and nucleotide exchange 
factor which assist cycles of substrate binding and release in an ATP 
dependent manner[19]. 
    Successive rounds of Hsp70 mediated folding results in the 
formation of fully folded substrates. However, generation of 
terminally misfolded or slowly folding species is also possible 
during this phenomenon. In view of above, selective degradation 
of misfolded protein is needed to avoid accumulation of potentially 
toxic aggregates. The folding pathway continues to correct the slowly 
folding or misfolded species for which Hsp70-substrate complex 
recruits Hsp90 and other chaperones. Hsp90 is a crucial regulator 
of protein homeostasis which also functions via an ATP-dependent 
hydrolytic cycle[16]. Hsp90 acts downstream of Hsp70 and assists in 
achieving conformational maturation of various signal transduction 
proteins including kinases and many of the steroid hormone 
receptors[16]. Similar to Hsp70, Hsp90 has several regulators and co-
chaperons such as Hop, CDC37, AHA1, p23 etc. which assist in 
attaining correct folding and stability of their substrates[20]. Hop allows 
substrate transfer through its tetratricopeptide repeat (TPR) domain 
and acts as a direct link between Hsp70 and Hsp90[21]. Moreover, 
Hsp40/Hsp70 and Hsp90 have also been reported to be involved in 
regulating ubiquitin proteasome system and autophagy[16]. This implies 
the fact that chaperones also facilitate timely removal of misfolded 
proteins. Quality control of misfolded proteins generated by Hsp70 
and Hsp90 folding machinery is found to be further regulated by a 
different TPR domain-containing co-chaperones such as C terminus 
domain of Hsc70 interacting protein (CHIP)[22]. CHIP associates 
with Hsp70 or Hsp90 through its TPR domain and ubiquitinates 
misfolded substrates and target them for endoplasmic-reticulum-
associated protein degradation pathway[22]. Interestingly, many of the 
Hsp90 substrates also include oncogenic proteins like kinases and 
transcription factors, documenting its role in tumor development[23]. 
Therefore, inhibition of Hsp90 has emerged as a novel therapeutic 
approach in cancer treatment.
    As discussed earlier, protein folding in cytosol is generally achieved 
by Hsp70 along with downstream chaperones and chaperonins. 
Chaperonins are large multimember ring complexes that provide 
posttranslational folding of proteins in an isolated compartment, 
unimpaired by aggregation[24]. They promote folding of cytosolic 
proteins with size upto ~60 kDa; which are large, slow folding and 
aggregation sensitive in both prokaryotes and eukaryotes. It has been 
proposed that Hsp70 and Hsp60 chaperone machinery act sequentially, 
where the previous acts upstream with nascent polypeptide and the 
latter functions downstream and assists in folding of those substrates 
which have failed to reach to the final states by Hsp70 alone[16].
    Eukaryotic Hsp60 represents group I chaperonins which includes 
GroEL found in bacteria, mitochondria and chloroplast with its 
seven membered ring structure. GroEL functionally cooperates with 
GroES (Hsp10 in eukaryotes) which forms a lid on the folding cage 
and together they represent the most extensively studied protein 
folding machinery[25]. The encapsulated protein folds at the expense 
of ATP and the folded product is released from the cage again by ATP 
dependent dissociation of GroES[26]. Another group of eukaryotic 



chaperonins known as TRiC/CCT, also exhibit an eight membered 
ring and function independent of the Hsp10 factor[27]. Interistingly, 
apical domain protrusion of TRiC replaces the role of lid during cage 
formation[27]. TRiC, with a longer folding time as compared to GroEL 
folds approximately 10% of the total cytosolic proteins including large 
multi-domain actin and tubulin proteins[28]. Interestingly, TRiC has 
also been found to prevent protein aggregation in some protein folding 
disease models[28]. One of the primary difference between GroEL and 
TRiC is that the previous acts strictly post-translationally while the 
later functions co-translationally to fold large proteins of 30 to120 
kDa size.
    Role of sHsps and Hsp100 is also crucial in maintaining protein 
quality and cellular proteome homeostasis. sHsps similar to Hsp40 
function independently during ATP reaction cycle[29]. sHsps bind 
to misfolded proteins and remain bound until they are released to 
the Hsp70/Hsp40 system, and consequently, prevent the unfolded 
proteins from aggregate formation[30]. Hsp100 family includes 
chaperones such as bacterial ClpB, yeast Hsp104 etc. which form 
another class of ATP driven folding system[31]. In co-operation 
with Hsp70/Hsp40, the hexametric ring like assemblies of these 
chaperones perform unfolding reaction followed by refolding of 
the substrate to attain native conformation[32]. Similar function 
is performed by Hsp110 in higher eukaryotes which refold and 
disaggregate the protein aggregates[32]. 

M O L E C U L A R C H A P E R O N E S A N D 
NEURODEGENERATIVE DISORDERS
Neurodegenerative disorders are a class of late-onset progressive 
disorders characterized by presence of misfolded protein 
aggregates in affected neurons and selective degeneration of the 
brain. Alzheimer’s disease (AD), Parkinson’s disease (PD) and 
polyglutamine (polyQ) disorders such as several Spinocerebellar 
ataxias, Huntington’s disease (HD) etc. represent this category of 
neurodegenerative disorders. The protein aggregates in each case 
are formed as a result of protein misfolding which might occur due 
to genetic or environmental stresses. Most often the disease causing 
protein undergoes enrichment of the β sheet conformation during 
misfolding. Interestingly, none of these proteins exhibit β sheet 
conformation in their wild type state. For instance, Huntingtin (Htt) 
protein which is responsible for causing HD is a 3140 amino acid 
protein with a molecular mass of 349 kDa and has been reported 
to acquire an α-helical/random coil conformation[33]. Similarly, 
α-synuclein, the major component of Lewy bodies in PD is a 14 kDa 
protein which although has a low content of ordered structure but 
adopts a N-terminal α-helical pattern otherwise[34]. In addition, Aβ 
peptide which is involved in pathogenesis of AD is derived from the 
proteolytic cleavage of the β-amyloid precursor protein (βAPP) and 
generally exists as a mixture of β sheet and random coil instead of a 
full-length β sheet conformer[35]. 

FORMATION OF PROTEIN AGGREGATES 
-A COMMON LINK BETWEEN VARIOUS 
NEURODEGENERATIVE DISORDERS
Conformational changes and protein misfolding result in 
amyloid-like aggregate formation which is a hallmark of most 
neurodegenerative diseases. For instance, HD is a dominantly 
inherited neurodegenerative disorder caused by expansion of CAG 
trinucleotide repeat in the coding region of the huntingtin (htt) 
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gene[36]. The exact cellular function of Htt is still debatable, however, 
it has been proposed to participate in vesicular transport and cell 
signaling[37]. Mutant Htt with expanded poly(Q) repeats tends to 
misfold and aggregates in the form of inclusion bodies in the cells[38]. 
Inclusion body formation results in pathological changes in the basal 
ganglia and cortical neurons of the brain[38]. PD on the other hand 
is a disorder of the central nervous system caused by mutations in 
the α-synuclein gene. Types of mutations in cases of PD may range 
from missense mutations to gene duplication or triplication. These 
alterations lead to the formation of mutant α-synuclein-containing 
aggregates known as Lewy bodies, the main pathological feature of 
PD[39]. Although the precise physiological function of α-synuclein 
is undetermined, it has been found to be ubiquitously expressed 
in the entire central nervous system. Subsequently, Alzheimer’s 
disease (AD) could be characterized as a typical protein misfolding 
disorder that leads to loss of neurons and synapses in the cerebral 
cortex and subcortical regions of the brain. AD pathogenesis is 
resulted by accumulation of misfolded Aβ peptides and the tau 
protein[40]. While βAPP, the precursor for Aβ, is a transmembrane 
protein, tau is a microtubule-associated protein. Both undergo 
abnormal post-translational modifications to give rise to Aβ and 
hyperphosphorylated tau and form major constituents of disease 
causing senile plaques and neurofibrillary tangles respectively[41]. 
Therefore, in view of the fact that protein misfolding serves as the 
root cause in most of neurodegenerative disorders, next section 
of the article discusses about major events which lead to disease 
pathogenesis and also provides a brief overview of the role of 
chaperones in alleviating aggregate-mediated cytotoxicity.
    The presence of fibrillar protein aggregates marks the signature 
feature shared by most of the neurodegenerative disorders. Such 
aggregates were reported for the first time about a century ago by 
Alios Alzheimer in brain parenchymal tissues of mentally retarded 
patients[42]. Proteinaceous deposits or aggregates are considered 
to be the end products of “specific” interactions among partially 
folded but unstructured protein intermediates[43]. The process of 
polymerization involves explicit interactions between already 
deposited initial aggregates, the “seeds” and the newly emerged 
unfolded monomers[44]. In view of above, it has been proposed 
that misfolded protein monomers trigger the process of aggregate 
formation and disease pathogenesis[44]. Several studies suggest that 
undesirable conformational changes of corresponding proteins 
underlie the cause of disease pathogenicity[34]. One of the following 
reasons may result in transformation of a natively folded or even 
nascent polypeptide chain into a pathogenic misfolded conformation: 
(a) impairment of chaperone based protein folding machinery due 
to aging or environmental stresses (eg. wild type α-synuclein in 
sporadic cases of PD) (b) genetic mutations in the protein coding 
region of the corresponding gene (eg. CAG expansion in exon 1 of 
htt) (c) stress mediated atypical post-translational modifications of the 
target protein (eg. hyperphosphorylation of the tau protein in AD) (d) 
precursor protein cleavage by proteolytic enzymes (eg. fragmentation 
of β-amyloid precursor protein in AD) (e) structural modifications 
driven by environmental changes such as oxidative stress, and (f) 
induced protein misfolding due to aggregation seeding, cross-seeding 
mechanisms[45]. The listed events, except for the occurrence of CAG 
expansion, entail changes in the secondary and/or tertiary structure 
of the target protein without any variation in the primary structure. 
This shows that the information needed for protein misfolding (except 
CAG expansion) is not encoded by the genome in sporadic cases of 
neurodegenerative disorders. Therefore, the protein aggregates found in 
neurodegenerative disorders share common structural and biochemical 
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features as per the altered confirmation of the constituent proteins.

SHARED MECHANISM OF PROTE IN 
A G G R E G A T E  F O R M A T I O N  I N 
NEURODEGENERATIVE DISORDERS
As a nascent polypeptide chain emerges out of the translating 
ribosome, numerous hydrophobic amino acid stretches get exposed 
to the cellular milieu, which must be stabilized to ensure non-
aggregated states of the protein. At this point, the polypeptide chain 
can theoretically adopt countless number of conformations out of 
which only one is sufficiently stable under physiological conditions 
and could take up the biologically active state. In the case of large 
and multidomain proteins, partially folded intermediates are produced 
during the folding process which often causes the “wrong” domains to 
interact with each other leading to the production of kinetically stable 
non-native species[43]. These species expose hydrophobic segments to 
the solvent, an event that sparks off the aggregation process[35]. The 
equilibrium between the native and non-native species shifts towards 
the non-native flank when the protein harbors mutations (like CAG 
repeats) or under conditions of cellular stress or aging. 
    As discussed earlier, the process of aggregate formation follows 
a “seeding nucleation” model consisting of two distinct phases: 
the slow progressing lag phase and the fast moving log phase[46,47]. 
The lag phase begins with the misfolded protein taking up an 
unusual β sheet conformation which initiates filament formation by 
cooperative aggregation of similar misfolded proteins. Such initial 
oligomeric assembly serves as a template or “seed” for the elongation 
process which is said to constitute the log phase of the aggregation 
process[46,47]. In the log phase, other misfolded protein molecules or 
even pre-formed seeds are recruited to the initial nuclei leading to 
rapid polymerisation of the filament and consequent formation of 
mature fibrillar structures[46,47]. These fibrillar deposits may then be 
further organized into larger aggregates or amyloid plaques. While 
aggregates are mostly sequestered and deposited intracellularly in the 
form of inclusion bodies, amyloid plaques are generally found outside 
the cell[47]. The intracellular inclusion bodies can be localized both in 
the cytoplasm as well as in the nucleus. Cytoplasmic inclusion bodies 
are most frequently deposited at the Microtubular Organisation 
Centre (MTOC or centrosome)[48]. The inclusion bodies are dense 
enough to sediment upon low speed centrifugation and could also be 
observed by light or electron microscopy[49]. Sometimes, the size of 
the inclusion bodies expands large enough to occupy approximately 
30% of the cytosolic area. However, intra-nuclear protein inclusions 
are key features of most inherited neurodegenerative disorders 
and have been found to be more toxic than their cytoplasmic 
counterparts[49]. It has been proposed that neuronal inclusions 
sequester several key transcription factors through hydrophobic 
interactions and thus deplete the level of cellular transcriptional 
machinery[12]. Subsequently, a progressive increase in cellular toxicity 
may lead to activation of cell death pathways. 

MOLECULAR CHAPERONES – HANDY 
TOOLS TO MAKE OR BREAK CYTOTOXIC 
AGGREGATES
Compromised protein folding apparatus serves as one of the major 
cause for development of neurodegenerative disorders. Several 

reports have indicated an early impairment of stress response in most 
of these disorders[50]. For instance, brain samples of sporadic AD and 
PD patients have been found to harbour an abnormally S-nitrosylated 
form of the endoplasmic reticulum (ER) chaperone protein disulphide 
isomerase (PDI)[51]. As a consequence, the anomalous chaperone 
is incapable of mounting an efficient ER stress response which is 
a basic necessity in all protein misfolding disorders. Similarly, a 
mutation in the gene encoding the co-chaperone for Grp78 (a crucial 
ER chaperone) has been shown to result in protein accumulation 
and neurodegeneration[52]. Moreover, mutations in genes encoding 
members of the Hsp family of chaperones that produce a 
dysfunctional protein have been found to be associated with several 
brain related disorders such as Hsp60-linked hereditary spastic 
paraplegia, Hsp27-linked distal hereditary motor neuropathy, Hsp22-
linked distal motor neuropathy, αB-crystallin-linked desmin-related 
myopathy, etc.[53].
    As discussed earlier, molecular chaperones represent key players 
of the protein quality control machinery and in this capacity they play 
essential role in eliminating toxic proteins by inhibiting or promoting 
the process of aggregate formation. Interestingly, molecular 
chaperones have been shown to be associated with Htt aggregates as 
well as with Lewy bodies in brain tissues of affected individuals[54,55]. 
Moreover, transgenic mouse models of SCA1, 3 and 7 have also 
been reported to exhibit such association[56]. It has been suggested 
that chaperones may either block the initial oligomerization of 
the misfolded proteins by preventing fibril formation or they may 
promote amyloid formation in an attempt to constrain the toxic 
species into benign aggregates[57,58]. 
    As discussed above, parts of the nascent polypeptides emerge out 
of the ribosome and associate themselves with Hsp70 chaperone to 
achieve favorable folding and to prevent undesirable interactions. 
Despite the available safeguards, if protein misfolding occurs due 
to one of the reasons discussed above, induction of additional Hsps 
takes place. For example, HeLa cells expressing ataxin-1 or ataxin-3 
with expanded polyglutamine repeats exhibit induction of Hsp70[59,60]. 
Similarly, transgenic mouse models of HD also demonstrated 
upregulated Hsp levels[61]. In this context it is interesting to note that 
modulation of various Hsps has been found to function as excellent 
modifiers of protein misfolding neurodegenerative disorders. For 
example, overexpression of yeast Hsp70 homolog Ssa1 or Hsp40 
homolog Ydj1 suppresses mutant Htt aggregate formation[11]. 
Similarly, Hsp70 and Hsp40 have been shown to reduce protein 
aggregation and alleviate neurotoxicity in animal and cell culture 
models of poly(Q) diseases[60,61]. Independent studies carried 
out on SCA3 Drosophila model also demonstrated inhibition of 
neurodegeneration upon targeted overexpression of Hsp70 and 
Hsp40[62]. Moreover, α-synuclein-induced neuronal loss in a PD 
model of Drosophila is prevented by the expression of Hsp70[63]. 
Similarly, Hsp70 and Hsp40-mediated rescue of neurodegenerative 
phenotype has also been established in cases of familial amyotrophic 
lateral sclerosis (ALS)[64]. 
    In addition to Hsp70, other molecular chaperones have also been 
identified as modulators of neurodegenerative diseases. Hsp104, 
for instance, has been demonstrated to assist in solubilizing small 
amyloid-like aggregates in a yeast model of HD[65]. Furthermore, 
exogenous expression of Hsp104 in C. elegans and rats could also 
reduce aggregates and mitigates poly(Q) toxicity[66,67]. In addition 
to its own effect, small Hsps like Hsp26 in yeast and Hsp27 in rats 
have been shown to potentiate Hsp104-mediated suppression[65,67]. 
Hsp104 has also proved to be useful in PD rat model where it could 
exert its modifier effect by antagonizing α-synuclein containing 
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oligomer formation leading to reduced dopaminergic degeneration[68]. 
Another co-chaperone to Hsp70 - CHIP (carboxy-terminus of 
Hsp70-interacting protein) is thought to act as an E3 ligase and 
target misfolded proteins for proteasomal degradation[57]. Over-
expression of CHIP in HD and SCA3 cell lines exhibited increased 
ubiquitination and degradation of Htt and ataxin-3 respectively, which 
subsequently led to reduced poly(Q) aggregation and also averted 
cell death[69]. Similar kind of suppression was obtained in studies 
on primary neurons as well as with zebrafish models[70]. However, 
in spite of being marked for degradation, some mutant proteins 
often escape proteolysis and trap 19S subunit of the proteasome into 
the growing aggregates. This leads to inhibition of the ubiquitin-
proteasome system and the eventual cellular dysfunction[71,72]. The 
cellular proteasomal machinery continues with its efforts to degrade 
the misfoled protein associated with it and as a result it may release 
more poly(Q)-containing fragments into the cytosol which in turn 
enrich the cellular pool of potentially more toxic oligomeric species.
    Interestingly, several studies have reported that molecular 
chaperones could also promote protein aggregation in an attempt to 
minimize the presence of soluble oligomers in the cell. For example, 
HDJ2 (a human Hsp40 homologue), caused enhanced aggregation 
of mutant Htt in Cos-7 cells[73]. Likewise, chaperones belonging to 
the proteasomal machinery like Rpt4 and Rpt6 have also been shown 
to facilitate the process of aggregation for expanded-poly(Q) Htt as 
well as ataxin-3 proteins[74]. Similarly, TRiC (TCP-1 ring complex) 
chaperonin has been demonstrated to increase amyloid aggregation 
and suppress poly(Q) mediated toxicity in C. elegans, yeast and cell 
culture[75-77]. It has been demonstrated in yeast poly(Q) model that 
TRiC in conjunction with Ssa1 and Ydj1 could boost the conversion 
of low molecular weight soluble oligomers into high molecular 
weight aggregates which coincided with suppression of poly(Q) 
induced toxicity[76]. 
    Chaperones could also eliminate misfolded proteins by a unique 
type of autophagic mechanism known as Chaperone-mediated 
autophagy (CMA). CMA entails the use of a membrane translocation 
complex for delivery of the target proteins to the lysosomal lumen 
rather than canonical vesicles[78]. A recent study has found Hsp70 
as an important player of this process[79]. Hsp70 may operate with 
other co-chaperones like Hsp40, Hsp90, hip, hop, and bag1 to 
facilitate aggregate clearance via CMA[79,80]. Among the proteins 
involved in neurodegenerative disorders, α-synuclein was the first 
to be identified as a substrate for CMA[81]. These findings were 
later confirmed by studies on neuronal cell cultures as well as on 
model systems. Similarly, Htt cleavage products as well as mutant 
form of Htt were found to be the targets of CMA[82]. Intriguingly, 
CMA dysfunction has been shown to be associated with several 
neurodegenerative disorders[83]. In concordance with this observation, 
genetic upregulation of CMA proved to be protective against 
neurotoxicity[84,85].

CONCLUDING REMARKS
In brief, molecular chaperones not only assist in accurate folding 
of nascent polypeptide chains and denatured proteins but also 
participate in damage control in many neurodegenerative diseases. 
Several studies on model organisms including Drosophila, C. elegans 
and mice have shown that induction of chaperones can ameliorate 
disease pathogenicity either by preventing protein misfolding 
and aggregation or by promoting aggregate formation so that the 
abnormal proteins could be isolated in inclusions. In doing so, they 
may perform refolding events or direct members of the proteasome 
machinery to the site of damage. Therefore, molecular chaperones 

occupy an important position in the list of probable genetic modifiers 
for neurodegenerative diseases, and therefore, are being considered 
as a promising choice for development of novel therapeutic strategies 
against neurodegenerative disorders. In fact, several studies have 
reported beneficial effects on disease symptoms upon administration 
of chaperone-inducible drugs. However, mechanistic details of 
chaperone action remain elusive. Further studies are needed to 
be carried out in the above area. Attempts should also be made to 
decipher the role of molecular chaperones as well as ubiquitin-
proteasome system with respect to age-dependent progression of 
neurodegenerative phenotypes. Such a collective approach may help 
design effective treatment strategies against these devastating human 
disorders.
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