Cerebral Function Monitoring In Neonatal Intensive Care Units

Aysen Orman, Nilay Hakan, Atika Çağlar, Mustafa Aydin

ABSTRACT

AIM: Cerebral function monitoring with amplitude-integrated electroencephalography (aEEG) device is a method for continuous monitoring of brain activity that is increasingly used in neonatal intensive care units.

METHODS: In its simplest form, aEEG is a processed single-channel EEG that is filtered and time-compressed. Several classifications are currently in use to describe patient’s tracings, voltage criteria, pattern recognition, cyclicity, and the presence of seizures.

RESULTS: The main usage of the aEEG currently is for select newborns with birth asphyxia who benefit from therapeutic hypothermia and for prediction of their long-term neurological prognosis. The early aEEG traces of preterm infants also predict their neurodevelopmental outcome. Current evidence demonstrates that aEEG is useful for defining cerebral background activity, detecting seizures, monitoring treatment effects and predicting neurodevelopmental outcomes of newborns. The main advantages of this device are its simplicity for both application and interpretation on one hand and the possibility of continuous long-term monitoring with real-time assessment of clinical events on the other.

CONCLUSION: aEEG is a safe and reliable method for bedside monitoring of neonatal cerebral function and it can also provide information about long-term neurological prognosis.

Key words: Cerebral function monitoring; Amplitude-integrated electroencephalography; Newborn infant; Treatment; Prognosis

Conflict-of-interest statement: The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Mustafa Aydin, MD, Department of Pediatrics-Neonatology, Firat University School of Medicine, 23119, Elazig, Turkey.

Email: dr1mustafa@hotmail.com

Telephone: +90 (424) 233 35 55

Fax: +90 (424) 238 80 96

Received: June 19, 2018

Revised: November 27, 2018

Accepted: November 30, 2018

Published online: December 23, 2018

The amplitude-integrated electroencephalogram (aEEG) is a filtered and time-compressed EEG that can be used for long-term cerebral function monitoring (CFM) in patients of all ages. The difficulty of using conventional electroencephalogram (eEEG) in neonatal intensive care units (NICUs) has led to the introduction of the aEEG as an auxiliary device for CFM. Nevertheless, eEEG remains the gold standard in identification and localization of neonatal seizures.

The aEEG device was originally developed by Maynard and Prior in 1960. It has been used in different age groups until now ranging from open heart surgeries to premature infants who benefit from therapeutic hypothermia in NICUs. Currently, it is mostly used for decision-making about starting therapeutic hypothermia and clinical follow-up of full-term neonates with perinatal hypoxic ischemic encephalopathy (HIE). aEEG has also been shown to be useful in predicting neurodevelopmental outcome of neonates with HIE. Another area where aEEG is used is the identification of seizures and the assessment of the effectiveness of treatment.
of used therapies. Recently, it has also been used to determine the effects of pulmonary hypertension and congenital heart diseases on the brain.

Studies have shown that there is a good correlation between aEEG and conventional EEG signals. The aEEG is usually recorded from one or two channels derived from parietal, central, or frontal electrodes. Therefore, it is considered as a single-channel EEG monitor. aEEG is based upon eEEG that is recorded with two or four scalp electrodes, depicting the amplitude of the raw EEG on a time-compressed semi-logarithmic scale. The electrodes of the device are placed on biparietal P3-P4 or central C3-C4 localizations (Figure 1). The signals from these regions are amplified first and then recorded at a rate of 6 cm per hour after being filtered through various filters to purify the artifacts caused by muscle activities or surrounding electronic devices. aEEG can be affected by other technical factors such as respiratory movements, interelectrode distance, head skin edema, electrocardiographic artifacts, and high frequency ventilation. Muscle or movement artifacts can result in a broad band or sudden changes activity recordings. Repetitive movements cause a similar appearance to seizure activity. Therefore, the artifacts should always be excluded and EEG traces without artifacts should be evaluated. Hence, it is also important to control the impedance of the aEEG, which reflects the quality of contact between the skin and the electrode. Poor contact or low impedance can cause to emergence of artifacts and so artificially increase of the voltage of aEEG. Silver-silver electrodes and coaxial cables which traditionally used in the original aEEG device reduce the artefacts that are caused by movement or equipment.

A special bandpass filter enhances frequencies between 2 and 15 Hz. Frequencies < 2 Hz and > 15 Hz are attenuated in order to eliminate artefacts. Amplitudes <10 μV are displayed on a linear scale and amplitudes >10 μV on a logarithmic scale. The lowest-detected amplitude is shown as the lower border, and the highest amplitude is shown as the upper border. By this means, even small changes in the lower amplitude remain visible, while an overloading of the display at high amplitudes is avoided. Due to time compression, 5 - 6 cm on the time scale represents 1 h, thus making the review of brain activity for hours and even days possible. The visible information in the aEEG traces is limited to changes of the amplitude. Modern devices offer the possibility of viewing the raw EEG, so the frequency and morphology of the raw EEG curve can also be considered for interpretation. This helps to distinguish between artefacts and real seizure activity during suspicious sections of the aEEG band. Broad-band filter often rejects the less than 2 activities per second.

Although aEEG offers the possibility for continuous CFM in neonates, it gives less information than a cEEG. The eEEG, using the international 10-20 system of electrode placement, is considered the gold standard for detecting electro-clinical or electrographic seizures, but the short duration of routine EEG may miss clinical or electrographic seizures. Moreover, it requires the compensator equipment and evaluation by a specialized neurologist. Another EEG monitoring protocol is continuous video-EEG. The American Clinical Neurophysiology Society guideline recommends that continuous EEG monitoring combined with synchronized video-EEG can be used for high-risk patients, including those with HIE, to screen for seizure activity. However, aEEG is straightforward to apply and can be monitored by neonatologists or nurses.

Hence, this review aims to explain the fundamentals and clinical applications of the aEEG for clinical practitioners.

aEEG classification
The standard aEEG contains minimum and maximum peak variability of the filtered EEG amplitude. It appears as an activity band passing slowly on the display screen. The width of the band indicates the variability in the aEEG amplitude. In healthy newborns, there are regular changes in the width of the band according to the sleep-wake state and fluctuates between 10 and 40 μV (Figure 2A). The interpretation of the EEG is basically based on the sleep-wake cycles (SWCs) and the presence of seizures (Table 1).

aEEG traces
Background activity in the aEEG trace is an indicator of electrical activity. Background activity varies with gestational age and drug exposure. In small preterm babies, the aEEG background is discontinuous with episodes of high amplitude activity alternate with low amplitude activity. As the gestational age increases, the aEEG background pattern becomes continuous in term babies. The aEEG background patterns are classified according to the upper and lower limit values of the activity bands (Table 2).

Two major factors in the classification of aEEG traces are voltage and pattern. Voltages in the trace are classified as normal, abnormal, and low. Interpretation of the aEEG usually involves three categories: (a) classification of the background pattern, (b) SWC and (c)
presence of seizure activity. Hence, aEEG traces observed in full-term neonates can be evaluated under six main groups\cite{21}:

1. **SWCs**: Normal voltage seen in healthy babies is characterized by wide awake and narrow sleep bands. The normal SWC seems to curl up and down like a snake with narrowing and expanding traces. The lower limit of the aEEG pattern should be > 5 μV and the upper limit should be > 10 μV. Narrow band occurs during rapid eye movement (REM) period and wide band during non-REM period (Figure 2B)\cite{22}. The absence of SWCs may also suggest presence of immature brain. The presence and quality of SWCs reflect the severity of the hypoxic-ischemic insult. But, there may be significant changes in the SWCs regardless of the severity of encephalopathy in newborns underwent perinatal asphyxia. In addition, the time of onset of SWC has a predictive value for neurodevelopmental outcome\cite{23}. However, further studies are needed in this respect.

2. **Wave-pattern**: It is seen before the completely normal trace appears in infants who recovering from hypoxic-ischemic injury. Voltage is normal, but lower (< 5 μV) and upper (> 10 μV) voltage fluctuations are seen.

3. **Absence of sleep-wake pattern**: It occurs after mild injuries and often following a normal sleep-wake cycle pattern. There are abnormal voltage band traces of fixed width.

4. **Burst-suppression**: It is seen in moderate or severe injuries. The longer it takes, worse the prognosis. Short-duration high-voltage bursts occur on a low-voltage trace that produce wide bands where the upper limit can be < 5 μV and the upper limit can exceed 10 μV (Figure 3)\cite{24}.

5. **Isoelectric line**: It is seen after severe hypoxic ischemic injury and predicts the poor prognosis. There are low-voltage traces which showing no fluctuation on an inactive background < 5 μV (Figure 4)\cite{25}.

6. **Seizure**: The seizures must be continued for at least ten minutes in order to be visible in the aEEG. Seizures can also be subclinical (subtle). It is difficult to distinguish short-term seizures from artefacts in aEEG traces. During the seizure, upper limit may be as high as 50 μV, so increased voltage changes are observed on the above-mentioned traces. If repeated frequently, a “saw-tooth” appearance will occur (Figure 5)\cite{26}.

aEEG in Clinical Practice

Currently, aEEG is often used in the NICU setting to detect seizures and predict the prognosis in full-term neonates with HIE. However, it is increasingly used for the determination of neurodevelopmental effects of persistent pulmonary hypertension and congenital heart diseases\cite{27}.

aEEG in Patients with HIE

During the neonatal period, aEEG has been generally studied in full-term neonates who developed HIE secondary to perinatal asphyxia. It is known that aEEG patterns are the early predictor of brain damage in these patients. Low voltage and flat isoelectric activity are associated with poor prognosis\cite{28}. Many studies reported that aEEG traces within the first 6–12 hours period of hypoxic-ischemic insult are very valuable\cite{29,30}. In the total body hypothermia (TOBY) study, aEEG was used as an adjunct to determine patients who should undergo to therapeutic hypothermia. After the use of aEEG in these trials, many centers have added aEEG to their clinical protocols for evaluating the severity of encephalopathy and deciding on brain cooling therapy.

Marics et al.\cite{31} retrospectively assessed the causes and prevalence of false-positive interpretation of aEEG in newborns with moderate to severe HIE. The muscle artefacts can especially lead to an incorrect

Table 2 Classification of background activity in aEEG (lower and upper limit values of activity bands).

<table>
<thead>
<tr>
<th>Background</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNV</td>
<td>> 5 μV</td>
<td>> 10-25 μV</td>
<td>Normal</td>
</tr>
<tr>
<td>DNV</td>
<td>< 5 μV</td>
<td>> 10 μV</td>
<td>Low amplitude can be variable</td>
</tr>
<tr>
<td>Burst-suppression</td>
<td>< 5 μV</td>
<td></td>
<td>Amplitude can rise to 25 μV with burst</td>
</tr>
<tr>
<td>Low voltage</td>
<td>< 5 μV</td>
<td>< 5 μV</td>
<td>There may be some variables</td>
</tr>
<tr>
<td>Flat tracing</td>
<td>< 5 μV</td>
<td>< 5 μV</td>
<td>Isoelectric line</td>
</tr>
</tbody>
</table>

CNV: Continuous normal voltage; DNV: Discontinuous normal voltage

Table 3 Comments on background activity of the aEEG.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Minimum amplitude</th>
<th>Maximum amplitude</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern 1</td>
<td>5-10 μV</td>
<td>10-50 μV</td>
<td>in the continuous background</td>
</tr>
<tr>
<td>Pattern 2</td>
<td>< 5 μV</td>
<td>> 10 μV</td>
<td>in the discontinuous background</td>
</tr>
<tr>
<td>Pattern 3</td>
<td>0-2 μV</td>
<td>> 25 μV</td>
<td>in the continuous background</td>
</tr>
<tr>
<td>Pattern 4</td>
<td>Very low voltage</td>
<td>< 5 μV</td>
<td>in the continuous background</td>
</tr>
<tr>
<td>Pattern 5</td>
<td>Low voltage</td>
<td>< 5 μV</td>
<td>Inactive, flat background activity of < 5 μV</td>
</tr>
</tbody>
</table>

Figure 2 Background aEEG patterns: A, normal pattern in a full-term neonate (lower limit > 5 μV and upper limit > 10-25 μV); B, normal aEEG voltage in which the sleep-wake patterns are observed (* REM period and ** non-REM period)

Figure 3 Burst suppression pattern (arrow showing a burst in raw EEG).
evaluation of aEEG traces. Because the seizures are common in the first 1-2 days of life in newborns with HIE, aEEG or video EEG is recommended in these patients. The aEEG is interpreted by measuring the waves’ amplitude and monitoring the pattern (Table 3, Figure 6).

Effects of hypothermia on aEEG traces
There is a direct correlation between the degree of hypothermia and the suppression in the aEEG amplitude. Periodic complexes at 30 °C, suppression at 25 °C, “burst” activity and an isoelectric line at 17 °C emerge in the aEEG. However, hypothermia in which the internal temperature of the body is cooled to 33-34 °C in the case of HIE does not affect the aEEG traces. The initiation of hypothermia to babies with HIE who have moderate to severe abnormal aEEG patterns within the first 6 hours after birth positively affects the neurological outcomes. In a study which compared cooled infants with non-cooled infants the positive predictive value of aEEG was low (64-75%) within 6 hours after birth; but it reached to 80% in both groups within 24-36 hours after birth. In another study, it was reported that possibility of severe neurological damage was high (>80%) in patients having severe suppression in aEEG in the first 48 hours of life. It is still unclear that whether the recovery time of pathological findings in aEEG is changed by cooling therapy.

aEEG for detection of neonatal seizures
Seizures in the newborns are often difficult to detect because they
Hypoxic-ischemic encephalopathy (HIE) is characterized by poor cerebral oxygenation and dysfunction. It is a consequence of hypoxia, often due to the birth process. Electroencephalography (EEG) is a valuable tool in assessing neonatal brain function. However, its sensitivity to frequency changes, discharges which do not make a significant amplitude change, is limited. Modern aEEG (almost-frequential EEG) devices record the patient’s cerebral electrical activity and cerebral hemodynamic changes simultaneously. Some aEEG devices record the patient’s video and/or video EEG monitoring on short- and long-term outcomes in high-risk neonates are needed.

Features showing poor prognosis: (1) Abnormal background pattern; (2) Interrupted pattern and low voltage; (3) An amplitude of <5 μV/within the first postnatal 3 days; (4) Absence of SWCs; (5) Status epilepticus; (6) Prolonged and marked moderate to severe voltage disturbances.

CFM using near infrared spectroscopy (NIRS)
aEEG and NIRS may be useful in examining cerebral electrical activity and cerebral hemodynamic changes during therapeutic hypothermia. NIRS is a technique which developed on the basis of relative transparency of light on the biological tissues. Thin-layer of the skin, skull and cerebral tissue of neonates allow the measurement of tissue oxygenation index assessed by NIRS and deoxygenated hemoglobin at different wavelengths and use for measuring changes in different concentrations. NIRS are based upon the principle of absorbing the light by oxygenated and deoxygenated hemoglobin at different wavelengths and use for measuring changes in different concentrations. Previous studies have reported that changes in cerebral oxygenation in the patients with HIE are associated with the severity of brain injury. Delayed perfusion at the beginning of the secondary energy failure in hypoxic cases causes low cerebral oxygenation and cerebral vasodilatation. This suggests that the increase in brain oxygenation measured by NIRS is associated with poor prognosis.

Ancora et al. [17] evaluated the neurodevelopmental outcome of cooled neonates with HIE by aEEG and NIRS and reported that aEEG lost its predictive value within the first 24 hours of life. But, the tissue oxygenation index assessed by NIRS has been reported to be useful for early prediction of infants who benefit from therapeutic approach. NIRS has the potential to guide clinical management by monitoring brain oxygenation and perfusion for preventing brain damage, and avoiding unnecessary treatment. It can also provide important information about the prognosis of these babies.
REFERENCES

