
progression of ADs. The oral route is the natural portal of entry for 
the parasite and gastrointestinal manifestations are frequently reported 
in patients with ADs. Prolactin was found to bind to tachyzoites and 
this process impairs their adhesion and penetration into the host cells. 
Hyperprolactinemia (HPRL) demonstrated in patients with different 
ADs may therefore reflect host defense against T. gondii infection, 
and several antipsychotic drugs that induce HPRL also have 
antitoxoplasmatic activity. Leptin and obesity play an important role 
in triggering and maintenance of inflammation and autoimmunity. 
T. gondii infection causes a significant increase in leptin levels 
and there is a significant positive association between the parasite 
seropositivity and obesity. Nitric oxide (NO) acts as a proapoptotic as 
well as an antiapoptotic biomodulator, and have a variety effects on 
autophagy. Overproduction of NO during T. gondii infection causes 
dysfunction of both these processes and therefore hinders cleaning 
service of the apoptotic/autophagic cell-derived antigenic remnants, 
finally leading to triggering and development of ADs. Damage of the 
olfactory system associated with chronic latent T. gondii infection 
may affect olfactory bulb volume and various olfactory functions, 
being therefore at least in part responsible for the smell impairment 
in ADs. The potent proinflammatory response of macrophages to 
infection with T. gondii type II may explain the ability of the strain 
to cause pathology after oral infection. The parasite also triggers 
the secretion of antiinflammatory cytokines, such as IL-10, TGF-β, 
and generation of reactive nitrogen intermediates, thus suppressing 
the development of the TH1 immune responses and deactivating 
macrophages. Toxoplasma chronic infection-induced cytotoxic 
T lymphocyte exhaustion leads to development of ADs because 
of decreased polyfunctionality, cytotoxic capability, cytokine 
production, proliferative capacity, and metabolic deficiency. The 
process of CD4+ and CD8+ T-cell immune exhaustion inhibits the 
immune response, thus facilitating pathogen persistence. Systemic T. 
gondii infection triggers a rapid and persistent decrease in the size of 
naïve CD4+ T lymphocyte pool, and a long-term thymic atrophy and 
output due to destruction of the thymic epithelium. Chronic parasite 
infections characterized by lower pathogen burden usually restricted 
to tissues, suggest alternative driving forces in the induction of T 
cell exhaustion, such as parasite encystations. A significantly lower 
occurrence of antibodies to persistent viral infections reported in 
patients with some ADs compared with controls may be due to 
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ABSTRACT
T. gondii is globally distributed with a high proportion of the world 
population estimated to be seropositive, and in the U.S. the parasite is 
responsible for approximately million infections each year. T. gondii 
tachyzoites infect almost all nucleated cells and their intracellular 
multiplication and lifelong persistence in the host cells play an 
important role in triggering and development of autoimmune diseases 
(ADs). Latent chronic T. gondii infection may be associated with iron, 
iodine, and folic acid deficiencies that facilitate development and/or 
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factors for T. gondii infection in the United States[34]. Contamination 
of drinking water with the parasite oocysts also contributed to their 
widespread dissemination[35].
    Among women of childbearing age (15-44 yrs of age) the overall 
seroprevalence was 9.1% indicating that over 90% of women 
were susceptible to congenital transmission of the parasite during 
pregnancy[32]. In pregnant women, the seroprevalence of anti-T. 
gondii-specific IgG antibodies varied from 6.1% in Mexico to 75.2% 
in Democratic Republic of Sao Tome and Principe (Table 2)[32,36]. 
    The global annual incidence of congenital toxoplasmosis was 
estimated to be 190 100 cases (95% CI: 179 300-206 300), equivalent 
to a burden of 1.20 million Disability Adjusted Life Years (DALYs) 
(95% CI: 0.79-1.90)[22]. Recent review by Torgerson et al[37] revealed 
that foodborn toxoplasmosis (10.3 million cases, 95% Uncertainty 
intervals (UI) 7.40-14.9 million) was the second most common 
foodborn parasitic disease, and this ailment with 825,000 DALYs 
(95% UI 561,000-1.26 million) resulted in one of the highest burdens 
in this term, mainly due to years lived with disability. At present, 
approximately 100 diseases and clinical entities probably have been 
associated with this neglected parasitic infection, including several 
ADs[24]. 

INFECTIONS AND AUTOIMMUNITY 
Viruses, number of bacteria and parasites are different preceding 
infections known as frequent environmental triggers that induce 
development of several ADs, and more than one pathogen can induce 
the same disease through similar pathomechanism(s) (e.g. “molecular 
mimicry”, inflammation, antigen competition, superantigens)[38-43] 
(Tables 3 and 4). Epidemiological and clinical studies suggested also 
a protective or limiting role of parasitic helminth infections on human 
autoimmune and allergic disorders[40,44-47]. 
    Root-Bernstein & Fairweather[42,50] proposed few theories having 
the common assumption that there is a genetic predisposition to 
ADs[51], and that such inclination requires environmental triggers[52,53], 

suppressed (exhausted) function of host B cells. Both T. gondii- 
and viral-associated inflammatory processes may be mutually 
overlapping which lead to worsening or improving clinical course 
of ADs depending on final temporary or stable proinflammatory/
antiinflammatory cytokine constellations. Dual-affinity T cell 
receptors may partly be responsible for frequently observed 
coinfections of T.gondii with some viruses and bacteria. Commonly 
reported comorbidities in ADs may at least in part be explained by 
liver damage caused by the pathogen. Vitamin D deficiency is often 
found in patients with ADs and there is vast evidence that the vitamin 
has an important beneficial impact on both innate and acquired 
immunity. Moreover, vitamin D exerts toxoplasmacidal effects and 
therefore should find a firm place in treatment regimens used in ADs.

Key words: Autoimmune diseases; Toxoplasma gondii; H. pylori 
infection; Viral infections; Autoantibodies; Hyperprolactinemia; 
Leptin; Obesity; Cytokines; Nitric oxide; Cysteine cathepsins; T and 
B cells immune exhaustion; Apoptosis; Autophagy; Liver damage; 
Olfactory dysfunction; Vitamin D deficiency
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INTRODUCTION
Autoimmune diseases (ADs) 
ADs are the third most common category of disease in the 
United States after cancer and cardiovascular disease, affecting 
approximately 14.7-23.5 million people (5-8% of the population) 
with at least one autoimmune condition[1], and about 78% (or 6.7 
million) of the persons are women[2-4] (Table 1). 
    Autoimmune thyroid diseases are the most common ADs, affecting 
approximately up to 10% of the world population[14,15]. Collectively, 
ADs are the fifth leading cause for death in women before age 65[16]. 
Recent estimates of NIH indicated that actual number of these clinical 
entities ranged from 80 to as many as 120 diseases, and affected 
population could be as high as ~50 million Americans. The direct 
health care costs of these diseases are > $100 billion per year[17,18]. 

T. gondii infection
Toxoplasmosis is a neglected, opportunistic disease and 
the intracellular parasite is highly pathogenic especially for 
immunocompromised subjects[19-21]. At present, in immunocompetent 
persons T. gondii infection is believed to be asymptomatic[20,21], but a 
steadily increasing body of literature data strongly suggests that the 
pathogen is emerging as a neglected global health threat[19,22-27], also 
in immunocompetent individuals[24]. 
    Worldwide, over six billion people have been infected with T. 
gondii[23,28] and IgG seroprevalence against the parasite varied from 
6.7% in Korea[29], 47% in France[30], to 98% in some regions[31]. In 
the United States, T. gondii is responsible for approximately million 
infections each year, and the overall antibody seroprevalence among 
individuals ≥ 6 yrs of age in 2011-2014 was 11.14% (95% CI 9.88% 
- 12.51%)[32]. The frequency of infection increased significantly with 
age in persons aged 66-75 years[28,33]. The parasite is omnipresent, and 
exposure to kittens and raw or uncooked foods were the main risk 
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Table 1 ADs in the United States by prevalence rate, dominant 
chemokine profile, and percentage of female patients (acc. to Seli & Arici 
[5], Ackerman [6]; with own modification).

Autoimmune disease
Prevalence 
rate per 
100,000

Dominant 
chemokine 
profile

Female 
patients 
(%)

Hashimoto’s thyroiditis 792 TH2 95

Sjögren’s syndrome 14 TH2 94

Addison’s disease 5 TH1 a 93

Scleroderma 4 TH2 92

Systemic lupus erythematosus 24 TH2 89

Primary biliary cirrhosis 3 TH1 b (IL-12/TH1 
and IL-23/TH17) 89

Graves’ disease 1152 TH2 88

Rheumatoid arthritis 860 TH1 75

Myastenia gravis 5 TH1 c 73
Polymyositis/
Dermatomyositis 5 TH1 

(TH17/IL-17)d 67

Multiple sclerosis 58 TH1 64

Vitiligo 400 TH1 e 52
Insulin-dependent diabetes  
mellitus 192 TH1 48
a,b,c,d,e Adapted from Refs [7-11], respectively. Namazi [11] suggested 
that the TH1-promoting effects of dehydroepiandrosterone (a naturally 
occurring adrenal steroid derived from cholesterol) can provide an 
explanation for the stronger TH1-immune response of women because it 
is a critical up-regulator of IL-2 generation, and induces the production of 
mature DCs with possible TH1-skewing potential [12,13]. 
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Table 2 Seroprevalence of anti-T. gondii-specific IgG antibodies in 
pregnant women in a selected number of countries (acc. to Elsheikha [36], 
Jones et al [32]; with own modification).
Study location Year Prevalence (%)

Mexico 2006 6.1

UK a 2005 9.1

USA 2010 9.1

Norway 1998 10.9

Bangladesh 1997 11.18

India 1999 11.6

Thailand 1998 13.1

Sweden 1999 14

Finland 1992 20.3

Denmark 1993 27.4

Turkey 2005 30.1

The Nederlands 2004 40.5

Switzerland 1995 46.1

France 1996 54.3

West Indies 2006 57

Germany 1999 63.2

DRSTP b 2007 75.2
a UK, United Kingdom; b DRSTP, Democratic Republic of Sao Tome and 
Principe.

Table 3 Infectious agents associated with ADs in humans in the years 
2004-2005 (acc. to Fairweather & Rose [38]; Samarkos & Vaiopoulos [39]; 
with own modification).
Disease Infectious agent

Multiple sclerosis EBV, measles virus

Diabetes mellitus type 1 Coxackie virus B4, rubella virus, CMV, 
mumps virus 

Graves’ disease Yersinia enterocolitica

Rheumatoid arthritis Escherichia coli, Mycobacterium 
tuberculosis, EBV, HCV

Reactive arthritis Enterobacteriaceae, Chlamydia trachomatis

Spondyloarthropathies Enterobacteriaceae, Klebsiella spp.

Polyarteritis nodosa HBV, HCV, HIV

Leśniowski-Crohn’s disease a Mycobacterium paratuberculosis

Celiac disease Adenoviruses

Systemic lupus erythematosus EBV, retroviruses

Psoriasis Retroviruses, Streptococcus

Myocarditis CB3, CMV, Chlamydia

Rheumatic fever/myocarditis Group A Streptococcus haemolyticus 

Chagas’ disease/myocarditis Trypanosoma cruzi

Myasthenia gravis HSV, HCV

Guillain-Barre syndrome CMV, EBV, Campylobacter spp.

Henoch-Schönlein purpura Streptococcus b-hemolyticus

Immune hemolytic anemia EBV, Mycoplasma pneumoniae

Kawasaki disease Staphylococcus aureus, Streptococci, 
Yersinia pseudotuberculosis

CB3, Coxackie virus B3; CMV, cytomegalovirus; EBV, Epstein-Barr virus; 
HCV, hepatitis C virus; HIV, human immunodeficiency virus; HSV, 
Herpes simplex virus. a Polish surgeon Antoni Leśniowski in 1904 was the 
first to provide description of ileitis terminalis known as Crohn’s disease 
[48, 49]. 

Table 4 Theories of how infections could cause ADs (acc. to Root-
Bernstein & Fairweather [42, 50]; with own modification).
Theory Description Refs

Hidden/cryptic 
antigen Tissue damage releases hidden antigens [54]

Epitope spread Multiple epitopes against self needed 
before AD develops [55-57]

Anti-idiotype Cellular receptor targets induce cross-
reactive autoantibodies [58, 59]

Molecular mimicry Accidental crossreactivity [60-63]
Bystander or 
adjuvant effect

Microbial or cytokine activation of pre-
existing autoreactive immune cells [63-65]

Dual-affinity T cell 
receptors (TCR) Non-specific activation of 2nd TCR [60, 66]

Antigenic 
complementarity a

Multiple infections by microbes that share 
antigenic complementarity/crossreactivity [67-70]

Co-infection 
(or co-exposure)

Releases self tissue and activate immune 
response (inflammasome activation), 
may involve crossreactivity or antigenic 
complementarity 

[71-75 b]

- Viral/parasite 
persistence Repeated activation drives epitope spread [71,76-80]

- Cytokine 
dysregulation Increased TH17 allows AD [56,80-85]

- Disrupt immune 
regulation Increased Treg allow AD [80,86,87]
a Innate TLR4/inflammasome activation can increase proinflammatory 
TH1- and TH17-type immune responses, which are frequently associated 
with development of AD in animal models [83], especially that damaged 
and dying host cells release nuclear particles that activate toll-like 
receptors (TLRs) [88]. b It should be noted that TLR2, TLR4 and the 
inflammasome were important in the pathogenesis of multiple sclerosis 
[73], and otherwise it is known that both these TLRs (and TLR9) played 
a marked role in the host defense against T. gondii infection through 
their activations by the glycosylphosphatidylinositol-anchored proteins 
dominating the surface of the parasite tachyzoites [89,90].

Table 5 ADs associated with T. gondii infection (acc. to Flegr, Prandota, et 
al [24]; with own modification).
Clinical entity Refs 

Multiple sclerosis [97]

Systemic sclerosis [98-101]

DM types 1 and 2 [102-104]
Hashimoto thyroiditis, Graves’ disease; thyroid 
autoimmune diseases [15,98,101,105,106]

Rheumatoid arthritis, Still’s disease [98,107-111]
Myocarditis, chronic heart failure, rheumatic 
fever/myocarditis [112,113]

Autism spectrum disorders [93,114-119]

Inflammatory bowel disease [101,120, 121]

Leśniowski-Crohn’s disease [120]

Ulcerative colitis [120]

Celiac disease [122-128]
Primary biliary cirrhosis, biliary atresia, cholestatic 
disorders [129-131]

Hepatitis, liver cirrhosis [132-140]

Systemic lupus erythematosus [141-143]
Ocular toxoplasmosis (retinochoroiditis, uveitis, 
retinitis pigmentosa) [144-146]

Epilepsy [147-152]

Antiphospholipid syndrome [98,101,153-155]

Polymyositis, dermatomyositis [113,156-162]
Autoimmune bullous disease (pemphigus and 
bullous phemphigoid) [101,163]

Polyarteritis nodosa [164]

Wegener’s granulomatosis; other vasculitides [98,101,154]

Kawasaki disease [164]

Cryoglobulinemia [98, 154]

especially focusing on infections (Table 4).
    Accumulating body of evidence suggests that T. gondii infection 
in humans has been implicated in a number of autoimmune disorders 
(Table 5). These associations are probably related to host/pathogen 
antigen(s) homology[91-93], because during its life cycle the parasite 
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interacts with approximately 3000 host genes and/or proteins[93]. It 
was proposed that antibodies raised to the pathogen may contribute 
to autoimmunity via the parasite/host protein mimicry (pentapeptides 
to heptapeptides or longer) that were identical to those within 
proteins expressed by numerous viruses, bacteria and parasites[94,95]. 
In a recent study, Zemkova et al[96] found that both unicellular and 
multicellular parasites used a significantly lower number of different 
pentapeptides than free-living controls and suggested that T-cell 
receptors mostly recognize the five amino acids-long part of peptides 
that are presented in the grove of major histocompatibility complex 
(MHC) molecules. 
    Cytokines generated in the host during infection with the 
parasite play a pivotal role in triggering, regulation, persistence, 
and treatment of these processes[84]. Given that T. gondii infection 
can induce variable immunomodulatory effects, according to the 
‘hygiene hypothesis’[46,165] it may also exert beneficial actions 
and protect against development of some ADs[166]. The effects of 
acute and chronic Coxackie virus B3 and two protozoan T. gondii 
and T. cruzi infections on the changes in the proinflammatory/
antiinflammatory TH1, TH2, TH17, and T regulatory (Treg) cell final 
patterns of cytokine immune responses in the host may at least 
in part explain the molecular basis of such beneficial or harmful 
actions that influence clinical course of coinfections (Table 6). 
This scenario may be strongly supported by the finding that several 
released inflammatory cytokines downregulated expression of 
major hepatic cytochromes P450 and other biotransformation 
enzymes responsible for the metabolism of many endogenous (e.g. 
steroids, vitamins, prostglandins, leukotrienes, thromboxanes) and 
exogenous (nutritional compounds, drugs and their metabolites, 
pesticides, environmental agents) substances[167-174] that finally affect 
various biochemical processes and thereby clinical course of ADs 
in genetically predisposed persons persistently exposed to harmful 
environmental factor(s).
    The aim of this work was to review and analyze available literature 
data suggesting that there is a link between acute and chronic T. 
gondii infection and development of ADs, which includes the idea 
of a common origin for these diseases[175], and to provide possible 
clinical, physiopathological and molecular explanations for several 
underlying pathomechanisms associated with these disturbances. 

LATENT CHRONIC T. gondii INFECTION 
MAY BE ASSOCIATED WITH IRON, IODINE 
AND FOLIC ACID DEFICIENCIES THAT FA-
CILITATE DEVELOPMENT AND/OR PRO-
GRESSION OF ADs
T. gondii must acquire nutrients from its host to survive and ensure 
its proliferation[176]. The parasite is an auxotroph for iron[177,178], 

Table 6 Regulation of cytokine gene expression in the course of acute and 
chronic viral and two protozoan infections (acc. to Teixeira et al [80]; with 
own modification).

T cell 
response Cytokine

Regulation of expression

Coxackie virus 
B3 T. gondii T. cruzi

Acute Chronic Acute Chronic Acute Chronic

TH1

IFN-γ ↑ ↑ ↑ ↓ ↑ ↑ ↑

TNF-α ↑ ↑ → ↑ → ↑ ↓ → ↑ ↑ →

IL-2 ↓ ↑ ↑ ↓ ↑ ↑ → ↓ →

IL-12 ↑ ↑ ↑ ↓ → ↑ ↓ → ↑ ↓ → ↑

TH2

IL-4 ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑ →

IL-5 ↓ ↑ ↑ ↑ ↑ ↑

IL-6 ↑ ↑ ↓ ↑ ↑ ↑

IL-10 ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ →

IL-13 ↑ NF   NF   NF ↑ ↑ →

TH17 a IL-17 ↑ ↑   NF ↓ ↑ ↑ ↑

Treg TGF-β ↑ ↑ ↑ ↑ ↑ ↑

NF, not found; ↑, superexpression; ↓, underexpression; →, no alteration. 
Multiple arrows mean that different results were reported in the literature. 
Treg, T regulatory cell. a The source of IL-17A cytokine are CD4+ T cells, 
CD8+ T cells, neutrophils, and eosinophils [85].  

cholesterol[179,180], tryptophan[181], arginine[177,182], polyamines[183], 
purines[184], and other essential nutrients[185]. Nutritional deficiencies 
may favor inducing and/or progression of ADs. 
    Iron. Worldwide, over 40% of children who have iron deficiency 
anemia are frequently associated with infection[186]. Iron plays a 
critical role in normal immune function, because of its growth 
promoting and differentiation-inducing properties for immune cells 
and its interference with cell-mediated immune effector pathways, 
and cytokine and enzymatic activities. In addition, relative iron 
deficiency is associated with mild immunosuppression (Table 7)[187-

189]. 
    In children with iron deficiency anemia Hassan et al[198] found 
markedly lower serum IgG levels, IL-6, decreased phagocytic 
activity, and oxidative burst of neutrophils compared with controls. 
They also showed a significant positive correlation between serum 
iron and IL-6 levels[198]. The presence of transferrin receptor on 
immature, proliferating thymocytes and the inhibition of thymocyte 
proliferation and differentiation by anti-transferrin receptor antibody 
highlight the importance of iron to T cell development. Iron regulates 
T-lymphocyte sensitivity to the IFN-γ/STAT1 signaling pathway[199]. 
There is an association of the iron transporter NRAMP1 (natural 
resistance-associated macrophage protein 1; this protein plays an 
important role in resistance to infection and macrophage function[200]) 
with several autoimmune disorders along with evidence that iron can 
catalyze the production of cryptic epitopes of several autoantigens, 
and establishes a potential role for iron in the development of 

Table 7 Changes in immune function associated with iron deficiency (acc. to Baker & Ghio [189]; with own modification).

Immune function Effect of iron deficiency Refs

T-lymphocyte proliferation Decreased blastogenesis and mitogenesis [190-193]

T-cell numbers Decreased Th and Tc cells in blood [194]

Immunoglobulin levels Lower serum levels of IgG4 [191]

Neutrophil and macrophage function Decreased bactericidal activities [190,191]

TNF and IL-2 secretion Reduced production by activated cells [190,194,195]

IFN-γ, IL-12, IL-2, IL-6 and IL-10 serum levels Decreased concentrations [191,194,196]

Serum macrophage MIF and MCP-1 levels Increased susceptibility to infection [197]

Humoral, cell-mediated and non-specific immunity Decreased responsiveness to functional tests of immune function [191]

MIF, migration inhibitory factor; MCP-1, monocyte chemoattractant protein-1.
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autoimmunity[187]. 
    ADs often present with abnormal iron homeostasis[189]. Nutritional 
deficiencies are important determining factors for fetal growth, body 
composition and childhood development. For example, Dosman 
et al[201] showed that among 33 children with autism spectrum 
disorders (ASD) 77% had restless sleep at baseline which improved 
significantly with iron therapy, suggesting a relationship between 
sleep disturbance and iron deficiency. Similar prevalence of iron 
deficiency was found in 69% of preschoolers and 35% of school-
aged children indicating that children with ASD require iron 
monitoring and its supplementation, especially that there was a 
correlation between low ferritin and more severe impairment in those 
children[202]. Deficient in iron body stores of the autistic individuals 
could be associated with chronic infection due to T. gondii because 
additional requirements for this ion are necessary for proliferation 
of the pathogen. This suggestion may be supported by the finding of 
Dimier & Bout[178] that intracellular T. gondii replication was iron-
dependent, suggesting that IFN-γ-treated enterocytes inhibited the 
parasite replication by limiting the availability of intracellular iron 
to this apicomplexan. In addition, children with ASD and chronic 
toxoplasmosis have overproduction of IFN-γ and NO[114], and it was 
shown that NO intercepts iron before incorporation into ferritin and 
indirectly mobilizes iron from ferritin in a glutathione-dependent 
manner[203]. 
    In model animals with SLE, both iron deficiency and iron 
supplementation affected disease manifestations[204]. Patients with 
SLE have inadequate nutritional status and food intake[205]. In one 
study of 170 women with SLE, inadequate iron intake was present 
in 36.7% of patients aged between 19 and 50 yrs old and 12.5% of 
individuals aged between 50 and 59 yrs[205]. In SLE, hematological 
abnormalities are frequent, and anemia was found in about 50% of 
patients, with anemia of chronic disease being the most common 
form[206]. In addition, impaired erythropoietin response and 
presence of antibodies against erythropoietin may contribute to the 
pathogenesis of this type of anemia. Moreover, autoantibodies, T 
lymphocytes, and disturbed balance in the cytokine network can also 
affect bone marrow erythropoiesis, leading to anemia[206]. Importantly, 
it was suggested that significantly increased serum levels of cytokine 
IL-6 may be responsible for development of anemia in this disease 
because there was an inverse correlation between IL-6 concentrations 
and hemoglobin in SLE patients[207]. It must be emphasized that 
chronic T. gondii infection was also associated with increased 
production of proinflammatory cytokines including IL-6[117], and this 
cytokine was found to promote the intracellular multiplication of the 
parasite in mice[208].
    In patients with active rheumatoid arthritis (RA) anemia of chronic 
disease (ACD) is often present, and the prevalence of iron deficiency 
is up to 50-70%[209]. Weber et al[210] found that mucosal uptake of 
iron was markedly decreased in patients with active RA, with and 
without iron deficiency. Inflammatory cytokines, particularly TNF-α, 
IL-1, IFN-γ and IL-6 were thought to contribute to the pathogenesis 
of ACD in RA, possibly by inhibiting erythropoietin production and 
macrophage iron release[211-213]. Moreover, TNF-α, IFN-γ and IL-1 
changed iron movement by reducing the concentration of transferring 
receptor on the cell surface, increasing synthesis of ferritin for metal 
storage and activating NO systems to reduce intracellular iron[190]. 
At present, it is believed that IL-6 is involved in the pathogenesis of 
RA by altering the balance between TH17 cells and Treg, and acts 
on inducing the production of hepcidin (a master regulator of iron 
homeostasis) which causes iron-deficient anemia, and its release 
is stimulated by the cytokine IL-6[214,215]. Important role of IFN-γ, 

TNF-α, and IL-6 marked increases generated during chronic T. gondii 
infection is in line with the aforementioned reasoning. IL-6 also 
frequently participates in the pathology of ocular diseases associated 
with infections caused by this parasite, including ADs[216,217]. 
    In summary, iron deficiency may have important implications in 
ADs, particularly in individuals with chronic T. gondii infection. On 
the other hand, limiting the availability of intracellular iron plays 
an antimicrobial role in human macrophage activity against this 
pathogen[218].

Iodine
A. Thyroid dysfunction is common, over two billion people 
worldwide are at risk for iodine deficiency and 30-70% will be 
hypothyroid[219]. Mooij et al[220] demonstrated that an insufficient 
dietary iodine intake in normal nonautoimmune female rats was 
capable to induce a thyroid autoimmune reactivity. A higher 
incidence of antithyroglobulin antibodies has been demonstrated in 
iodine deficiency regions[221]. Kabelitz et al[222] found the prevalence 
of anti-thyroid peroxidase antibodies and autoimmune thyroiditis 
in children and adolescents in an iodine replete area. Iodine deficit 
influenced development of thyroid autoimmunity especially in elderly 
people, and thyroid autoantibodies are common in old age[223,224]. 
Patients with endemic goiter[225] and endemic cretinism[226] showed 
to have increased serum IgG that affect the growth of thyrocytes in 
vitro. Thyroids of iodine-deficient goiter patients contain aggregates 
of epithelial cells and DCs (the antigen-presenting cells)[227], which 
are capable of transferring autoimmune thyroiditis in experimental 
animals[228], and the abberant MHC class II expression on thyrocytes 
in Graves’ disease may be relevant for autoimmunity[229]. It must 
be noted that recently iodine deficiency has also been reported in 
autistic children and their mothers, and it was inversely related to 
disease severity[230,231]. Statistically significant lower concentrations 
of free triiodothyronine, free thyroxine and higher levels of thyroid 
stimulating hormone were found in the autistic groups as compared 
with the control groups. Interestingly, urinary iodine was markedly 
lower among patients with ASD and their mothers as compared with 
respective controls (both p < 0.001), and this may reflect a sparing 
effect of their bodies due to iodine deficiency.
    B. Several authors suggested that there is a relationship between 
iodine deficiency and T. gondii infection[220,232,233]. Impaired thyroid 
function was found in murine toxoplasmosis[234]. Studies of Stahl 
et al[234,235] performed on female mice infected intraperitoneally 
with cysts of T. gondii Cornell strain, demonstrated hypothalamic 
dysfunction associated with decline of serum thyroxine (T4) 
concentrations and atrophy in the thymus, ovaries and uterus. In 
humans, Kankova et al[106] found that pregnant women (9-12th 
gestational weeks) with latent toxoplasmosis had a decrease in serum 
thyroid stimulating hormone (TSH) levels (p < 0.049), and a positive 
correlation was found between free thyroxine levels and the index of 
positivity for anti-T. gondii IgG antibodies (p = 0.033). Moreover, 
the infected pregnant women often had more highly elevated thyroid 
peroxidase antibodies (a serum marker of autoimmune thyroid 
diseases) than the Toxoplasma-negative participants (p = 0.004)
[106]. Singh et al[233] analyzed 194 school students aged 10-18 yrs and 
showed a significant difference in the seroprevalence of T. gondii 
infection in children with grade II goiter as compared with individuals 
having grade I goiter or no goiter (46.1% vs. 31.8 and 26.5%, 
respectively, p < 0.05). Finally, Wasserman et al[105] demonstrated 
in sera of 1807 pregnancies in 1591 women that prior infection with 
T. gondii was associated significantly with the elevation of thyroid 
peroxidase antibodies. 
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    C. Thyroid cells are capable to produce many cytokines and 
other factors that play an important role in development of host 
autoimmunity (Table 8)[236].
    The expression of ICAM-1 and LFA-3 by thyroid cells is enhanced 
by IFN-γ, TNF and IL-1[237]. It must be noted that T. gondii infection 
also triggers production of proinflammatory (e.g. IFN-γ, IL-12, 
TNF-α, IL-1β, IL-6), antiinflammatory cytokines (IL-10, IL-4, 
TGF-β, IL-6), and NO[238,239]. Inflammation induced by the parasite 
and/or other pathogens can therefore modify cell signaling pathways 
and influence T cell activity and cytokine secretion profiles by 
thyroid cells sometimes leading to autoimmunity. Interestingly, T. 
gondii secretes a pore-forming protein (TgPLP1) that is crucial for 
rapid parasite exit from host cells[240], and thyroid cell destruction is 
mediated by perforin containing cells (mainly NK cells and CD8+ 

T cells) which accumulate in the thyroid and by Fas dependent 
mechanism[241,242]. One cannot exclude that at least in part TgPLP1 
present in these cells contribute to thyroid tissue destruction observed 
in Hashimoto’s (goitrous) thyroiditis (HT). This may be supported 
by the finding of T. gondii transmission from infected DCs to NK 
cells[243]. 
    Wide varieties of cytokines were detected in thyroid tissues from 
patients with autoimmune thyroid disease (ATD), hyperthyroid 
Graves’ disease (GD), and HT[237,244-248], and several lines of evidence 
suggested that they play an important role in the pathogenesis 
of these clinical entities through modulation of iodine uptake by 
thyroid follicular cells, in addition to affecting their growth and 
function[247]. In this context, it should be emphasized that TSH 
increased both sodium iodide symporter (NIS) gene expression (NIS 
is essential for iodide uptake by the thyroid gland and the formation 
of thyroid hormones) and iodide uptake in primary thyroid follicular 
cell cultures in a dose-dependent manner, and this induction was 
modulated by cytokines[247,249,250]. It was reported that cytokines IL-
1α, TNF-α and IFN-γ at concentrations of 0.1, 1, 10, 50 and 100 
mU/L inhibited TSH-induced NIS gene expression and iodide 
uptake (both TNF-α and, to a lesser extent IL-1α, inhibited basal and 
induced NIS expression, but IFN-γ exerted similar activity only in 
1000 mU/L concentration and inhibition ranged from 40 to 65%[247]. 
Ozawa et al[249] showed that prolonged administration of TNF-α to 
mice resulted in a dose-dependent decrease in serum concentrations 
of triiodothyronine (T3) and T4, while in healthy volunteers induced 
changes in TSH and thyroid hormones resembling those found in 
non-thyroidal illness observed in patients with infections, in whom 
production of this cytokine is a feature[250]. Furthermore, other 
cytokines, such as IL-6 and IL-1β have been found to decrease 
NIS mRNA expression in TSH-stimulated FRTL-5-cells (Fisher rat 
thyroid cell line), and IL-1β suppressed iodide accumulation[251]. 
TNF-β and IFN-γ, separately and added together with IL-1β affected 
function of cultured human thyroid cells[252,253], and IL-6 was found to 
inhibit human thyroid peroxidase gene expression[254]. These reports 
are in line with the finding of different cytokine mRNA profiles in 
GD, HT, and nonautoimmune thyroid disorders[255], as well as with 
the higher levels of NIS mRNA in GD compared with multinodular 
goiter tissue samples[247], and with the enhanced production of IFN-γ 
by thyroid-derived T cell clones observed in patients with HT[256].
Nb. IFN-γ was found to induce MHC class II expression by thyroid 
epithelium[257]. It should be noted that in humans, iodine uptake is not 
exclusive to the thyroid gland, as other organs also can accumulate 
this ion, including the salivary gland, stomach, placenta, lactating 
mammary gland, and probably intestine[255,256,258,259]. Finally, it must 
however be added that iodine deficiency may also reflect a host 
defense against development of Hashimoto’s thyroiditis because in 

Table 8 Biomolecules generated by thyroid cell that interplay with the 
immune system (acc. to Saranac et al [236]; with own modification).
Cytokines IL-1, IL-6, IL-12, IL-13, IL-15, IL-17, and IL-18

Growth factors IGF-1, IGF-2, EGF, and VEGF

Adhesion molecules ICAM-1 and LFA-3

Inflammatory mediators NO, prostaglandins
ICAM-1, intercellular adhesion molecule-1; LFA-3, lymphocyte function-
associated antigen-3; VEGF,  vascular endothelial growth factor; IGF-1, 
insulin-like growth factor 1 or 2; EGF, epidermal growth factor.

one study it appeared that after iodine prophylaxis the incidence of 
this clinical entity was 4-fold higher than in other subgroups with this 
disorder[260]. 
    Together, increased production of proinflammatory cytokines 
play an important role in the pathogenesis of thyroid dysfunction, 
ATD, GD and HT. Chronic T. gondii infection should be taken into 
consideration as a potential environmental trigger of ADs associated 
with the thyroid gland because of frequent iodine deficiency and 
worldwide distribution of the parasite. 
    Folic acid. Natural CD25+CD4+ Treg cells constitutively express 
high amounts of folate receptor 4 (FR4), a subtype of the receptor 
for folic acid, compared with other activated or naïve T cells before 
and after antigenic stimulation, and FR4 is functionally essential for 
their maintenance because its blockade was sufficient for reducing 
natural Treg cells in vivo[261]. It is therefore likely that Treg cells are 
highly dependent on folic acid and FR4 may enable them to bind and 
incorporate folic acid efficiently, and it was suggested that depletion 
of these cells can evoke severe immune responses to self antigens, 
in addition to enhancing immune responses to nonself antigens[261]. 
It must be noted that thyroid dysfunction is frequently observed in 
autism and recently Frye et al[262] suggested that this abnormality 
may be related to blocking folate receptor a autoantibodies that are 
prevalent in ASD.
    Massimine et al[263] provided morphological and biochemical 
evidence that T. gondii has a specific protein transporter exposed 
at the parasite surface, with high affinity for folic acid, which is 
responsible for the acquisition and salvaging of exogenous folate 
compounds. Transport of folic acid across the parasite plasma 
membrane was rapid, biphasic, temperature-dependent, bidirectional, 
concentration dependent and specific. Methotrexate, a folate analog, 
was found to be internalized by the protozoan pathogen to the 
mitochondrion[263]. These findings may further support the suggestion 
that T. gondii infection was associated with development of Down 
syndrome[118], especially that the simultaneous dietary restriction and 
infection with the parasite were able to induce DNA damage in the 
peripheral blood cells of infected mice[264], as well as affect brain 
levels of folate and disrupt cognitive function[265]. 

VASCULAR ENDOTHELIAL CELLS ARE SUS-
CEPTIBE TO PERSISTENT INFECTION WITH 
T. GONDII TACHYZOITES AND THEREFORE 
MAY PARTICULARLY FAVOR DEVELOPMENT 
OF ADs
The endothelial cells are critically important for the delivery 
of nutrients and oxygen throughout the body, but they also 
contribute to pathology including the triggering and persistence of 
inflammation[266]. Tropism of different pathogens for particular cell 
types and/or specific tissue sites was a long-recognized biological 
phenomenon[267]. T. gondii is disseminating in the body in a Trojan 



horse-manner in various eukaryotic cells, including endothelial 
cells and macrophages, and division rate of intracellular unprimed 
T. gondii tachyzoites in endothelial cells, monocyte-derived 
macrophages, peritoneal, or alveolar cells is rapid (Table 9)[268]. 

  Canedo-Soares et al[285] analyzed invasion kinetics of two T. gondii 
strains, RH (virulent) and ME49 (nonvirulent) in two human vascular 
endothelial cell types, HMEC-1 (skin microvasculature) and HUVEC 
(umbilical cord vein vasculature) and established that surprisingly the 
less virulent strain invaded a greater proportion of cells than the more 
aggressive RH strain. Similar results were obtained by Lachenmaier 
et al[286] who showed in vitro that RH tachyzoites invaded lower 
proportion of rat brain microvascular endothelial cells than those of 
ME49 strain. Thus, it appeared that T. gondii virulence relied more 
on its replication speed than on its invasion efficiency[285]. 
    Smith et al[267] found that retinal vascular endothelium cells have 
enhanced susceptibility to infection with T. gondii tachyzoites in 
comparison with aorta (55% more), umbilical vein (33%), and 
dermal endothelial cells (34%). Free tachyzoites had the ability to 
transmigrate a stimulated human retinal endothelium monolayer[287]. 
Tachyzoites crossed in vitro retinal endothelium assisted by 
intercellular adhesion molecule-1 (ICAM-1) (the cell surface 
IgG immunoglobin superfamily member), and ICAM-1 blockade 
significantly inhibited the parasite migration across stimulated 
human retinal, but not choroidal vascular endothelium[287]. There 
has been interest in the heterogeneity of vascular endothelium, not 
only between arteries and venous types[288], but also between same 
type vessels located within different organs or within different 
tissues in the same organ[289,290]. An intracellular environment low in 
ROS or RNI and/or high in iron or tryptophan facilitate tachyzoite 
proliferation[274,279,283].

AUTOIMMUNITY AND GASTROINTESTINAL 
TRACT DISORDERS
Underestimated role of oral T. gondii infection in development of 
gastrointestinal manifestations frequently reported in ADs
Gastrointestinal manifestations are often documented in many 
systemic ADs including SLE, RA, Sjögren’s syndrome, Behçet 
disease, progressive systemic sclerosis, polyarteritis nodosa, 
inflammatory muscle disorders, antiphospholipid antibody syndrome, 
thyroid diseases, primary biliary cirrhosis, and ASD[291-294]. 
    T. gondii exposure is the well-documented risk factor for 
schizophrenia[295,296], inflammatory bowel disease, ulcerative 
colitis, celiac disease, autism, and Leśniowski-Crohn’s disease[120]. 
Interestingly, in a large sample of 23 471 primary care patients 
(mean age 51.4 yrs, 66.1% female) studied recently it was 
found a significantly increased prevalence of ADs in functional 
gastrointestinal tract disorders not explained by differences in age and 
gender[297]. This may support a notion that T. gondii infection play a 
much more important, but so far neglected, role in the pathogenesis 
of ADs[120]. 
    The oral route is the natural portal of entry for T. gondii. 
Enterocytes are the first cells to be invaded by the parasite when 
ingested pathogens are released from cysts or oocysts within the 
gastrointestinal tract[178,298]. The intestinal epithelium constitutes a 
unique lymphoid compartment of the gut mucosa immune system 
with the presence of intraepithelial lymphocytes that have the ability 
to lyse T. gondii infected enterocytes and to synthesize IFN-γ in 
infected mice[299]. The intestinal epithelium and the underlying 
mucosal tissues, as well as local lymph nodes with lymphatic 
endothelial cells (LECs) are heavily populated with immune system 

that can make rapid contact with the parasite following intestinal 
penetration, and there was a protective mucosal TH2 immune 
response against T. gondii by murine mesenteric lymph node 
DCs[300]. Lymphatic vessels are key routes for the recirculation of 
fluid and cells that enter tissues from blood vessels[301]. LECs line 
the afferent and efferent lymphatic vessels, the medullary sinuses, 
and both the ceiling and floor of the lymph nodes[302]. The gaps 
between LECs are so large that bacteria and other cells can enter 
along with the fluid. DCs, macrophages, and lymphocytes enter 
lymphatics, but neutrophils and erythrocytes generally do not[301]. 
Recently, it was demonstrated that LECs have antigen presenting cell 
properties because they express MHC I and MHC II molecules on 
the cell surface, and frequently they are presumed to be the first that 
encounter peripheral antigens, cytokines and immune cells[302]. LECs 
are also important for CD4+ T cell tolerance by acting as a storage 
for antigens that are not directly presented on their own MHC II, 
but transported to DCs for MHC II presentation[303]. LECs probably 
are able to directly present antigens to CD8+ T cells during the early 
phases of inflammation and indirectly by DCs through archiving of 
antigens[304,305]. Enlarged mesenteric lymph nodes frequently seen 
at imaging in patients with inflammatory bowel disease, children 
with abdominal pain, and in asymptomatic children[306-308] may be 
due to T. gondii infection[120]. This suggestion is supported by the 
finding that DCs can move to Peyer’s patches and mesenteric lymph 
nodes where they interact with naïve lymphocytes and initiate 
adaptive immune response that result in activation of T and B 
memory cells, and proliferative response and cytokine release, finally 
leading to gastrointestinal tract inflammation[120,309]. Thus, it seems 
that tachyzoites released during T. gondii oral infection may also 
attack LECs and at least in part participate in development of these 
immunopathological events, including lymphoid nodular hyperplasia 
in the colon of children with autism[310], and gastrointestinal disorders 
and manifestations in several other ADs[120]. 
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Table 9 Division rate of intracellular T. gondii tachyzoites in primary 
human cells in vitro (acc. to Channon et al [268]; with own modification).

Cell type
Parasite 
division rate 
Unprimed

IFN-γ 
primed Mechanism Refs

Hemopoietic

Lymphocyte S [268]

Neutrophil S [268-270]

Adherent monocyte S ROS; not TS [270-275]

Nonadherent monocyte R R [268,272]

Dendritic cell R [268]

Alveolar macrophage R S Partly TS [275]

Peritoneal macrophage R S [276]

Monocyte-derived 
macrophage R S ROS; 

not RNI [274-277]

Nonhemopoietic

Neuron S [278]

Foreskin fibroblast R S TS [279,280]

Umbilical vein 
endothelial cell R S TS or ROS; 

not RNI [274,281]

Retinal pigment 
epithelial cell R S TS [282]

Fetal astrocyte R S RNI [278,283]

Fetal microglial cell R R [284]
R, rapid; S, slow; RNI, reactive nitrogen intermediates; ROS, reactive 
oxygen species; TS, tryptophan starvation.
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T. GONDII, VIRUSES AND BACTERIA UTILIZE 
HEPARAN SULFATE (HS) PROTEOGLYCANS 
AS RECEPTORS FOR INFECTION, INVASION, 
AND COLONIZATION
Impaired sulfation of sugars on the surface of host cells is 
beneficial for defense against infection with the parasite 
Parasites, viruses (HBV, HCV, HEV, HSV- and -2, CMV, HIV-1, 
HPV, HTLV1)[311] and bacteria (H. pylori, Chlamydia, Streptococcus, 
Pseudomonas aeruginosa, Enterococcus faecalis, Mycobacterium 
tuberculosis, Borrelia burgdorferi, Yersinia enterocolitica)[311-313] 
use HS as receptors for infection, invasion, and colonization of 
host cells and tissues[314,315]. HS proteoglycans are present on the 
cell surface, within the extracellular matrix, as soluble molecules in 
tissues and blood, and in the cell nucleus, in which they control many 
cellular functions such as cell cycle and proliferation, transcription 
machinery, chromatin structure modification, and transport cargo 
to the nucleus[316,317]. T. gondii, like viruses, also binds to sialic acid 
residues on the host cell surface[92,318]. The parasite contact with the 
cell surface in fibroblasts is mediated by laminins on the pathogen 
surface, which bind to host b1 integrins[319], and laminin chains are 
implicated as autoantigens in several ADs[320]. 
    Proteoglycans are important host cell receptors, and the tachyzoite 
surface antigens SAGs are key ligands[321-323]. Proteoglycans are 
built of glycosaminoglycan (GAG) chains in which HS is the main 
component[324]. Tachyzoites SAG3 binds HS proteoglycans on CHO 
cells[323], and the parasite lectin is also capable of binding to sulfated 
proteoglycans[325]. The ability of tachyzoites to infect a number of 
different cell lines has been correlated with the surface expression of 
sialic acid residues[326]. 
    The tachyzoite form of T. gondii can efficiently invade and rapidly 
multiply in almost every type of nucleated mammalian cell[327-

329], and it was suggested that HS facilitates parasite replication 
postinvasion[330]. T. gondii expresses a surface antigen SAG3 that 
binds to HS[323]. HS is a GAG polymerized from N-acetylglucosamine 
and glucuronic acid attached to protein core of a proteoglycan[330]. It 
was shown that: a) HS was necessary for extensive T. gondii infection 
of several cell types, b) efficient infection depended on N sulfation 
of subsets of N-acetylglucosamine chains, c) the surface antigen 
SAG3 of the parasite probably binds to glycoconjugates terminating 
in sialic acid[326], which are as abundant on the cell surface as HS[330], 
and d) HS facilitated replication of the parasite in the cytoplasm of 
mammalian cells within a self-made membrane-bound compartment 
– the parasitophorous vacuole[323,326,330]. Several studies documented 
that altering HS altered infection[325,331], and it was demonstrated 
in vitro that the parasite required N sulfation of HS initiated by 
N-deacetylase/N-sulfotransferase-1because mammary tumors lacking 
this enzyme(s) exhibited markedly reduced T. gonii infectivity[330] 
(Table 10). 
    Hyaluronan, a major non-protein GAG component of the 
extracellular matrix and the major polysaccharide involved in 
atherosclerotic process of the blood vessel wall, plays a crucial 
role acting as a modulator of all inflammatory stages, affecting the 
behavior of both endothelial and smooth muscle cells[343]. In addition, 
GAGs and proteoglycans possess the properties essential for lipid 
retention, immune system activation, SMVCs proliferation, and 
macrophage recruitment[343].

   T. gondii tachyzoites are able to infect several types of cells. 
Mutant cells, which present few or no surface-exposed sialic acid 

residues were infected to a lower extent. Similar effects were obtained 
if sialic acid residues were removed by previous neuraminidase 
treatment[326]. Addition of sialic acid residues to surface-exposed 
glycoconjugates using fetuin as a sialic acid donor rendered the cells 
easily infected by T. gondii. These findings indicated that surface-
exposed carbohydrate residues of the host cell were involved on the 
process of T. gondii-host cell recognition[326]. 
    Ortega-Barria & Boothroyd[325] found a sugar-binding activity 
(lectin) in tachyzoites of T. gondii that plays an important role in 
human endothelial cells and fibroblasts infection. Binding of T. 
gondii to host cells is partially mediated by interaction with sulfated 
GAGs[331]. Interestingly, infectivity of tachyzoites for human foreskin 
fibroblast cells that are commonly used in vitro to grow T. gondii 
was increased by low concentrations of the sulfated glycoconjugate, 
whereas high concentrations of soluble GAGs decreased the 
attachment of parasites to human host cells from a variety of 
lineages, including monocytic, fibroblast, endothelial, epithelial, and 
macrophages cells[325,331]. The inhibition of parasite attachment by 
GAGs was observed with heparin and HS and also with chondroitin 
sulfates, indicating that the ligands for attachment are capable of 
recognizing a broad range of GAGs (Table 11). 
    It was also found that addition of excess soluble GAGs blocked 
parasite attachment to serum-coated glass, thereby preventing 
gliding motility of extracellular parasites (Table 12)[331]. A 
significant proportion of cytokines bind to GAGs such as heparin, 
a highly sulfated HS. GAGs are involved in signaling, stabilization 
and/or storage of several cytokines including IL-8, monocyte 
chemoattractant protein-1, VEGF, G-CSF, basic fibroblast growth 
factor, and hepatocyte growth factor[344]. Ishiwa et al[345] demonstrated 
that dextran markedly inhibited T. gondii infection, and particularly 
low molecular weight dextran (10 kDa) most effectively both in 
vitro and in vivo slowed the growth of the parasite inside host cells. 
Interestingly, this preparation recently administered intravenously 
inhibited acute T. gondii infection in pigs[346]. 
    It must be noted that inhibition of GAGs biosynthesis and 
sulfation on the host cells reduced Toxoplasma infectivity, and 
tachyzoites showed a reduced ability to infect epithelial cell mutants 
deficient in the biosynthesis of surface proteoglycans[325]. The 
importance of sulfated proteoglycan recognition was supported by 
the demonstration that GAG-deficient mutant host cells, and wild-

Table 10 Glycoconjugate glycans as viral and T. gondii receptors (acc. to 
Olofsson & Bergström [332]; with own modification).

Virus type Receptor Refs

HCV Heparan sulfate (HS) [333]

HSV types 1 and 2 HS (chondroitin sulfate)

CMV HS [334-336]

HHV types 6 and 7 HS

HHV type 8 HS [337]

HIV-1

H S ( c h o n d r o i t i n s u l f a t e ) ; 
S u l f a t i d e ; f u c o s e o n D C . 
Galactosylceramide: receptor 
for transcytosis through the 
mucosa. Glycosaminoglycan 
(GAG): contributing to brain 
invasion 

[338-341]

T. gondiia HS [314,315,323,329,330]

Hyaluronan [342]
aCell surface HS and glycans containing sialic acid, have been shown to 
act as adhesins and potential receptors for T. gondii [330]. Other parasites, 
viruses and bacteria, also utilize HS as receptors for infection, invasion, 
and colonization of host cells and tissues [314,315].
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Table 11 Inhibition by soluble GAGs of T. gondii attachment to various mammalian cellsa (acc. to Carruthers et al [331]; with own modification).

Cell line Cell type Heparin CSC IC50 (mg/mL) a CSA Dextran sulfate Dextran Fucoidin

HFF Fibroblast 4.8 ± 2.0 4.1 ± 1.4 7.3 ± 1.7 2.2 ± 0.4 > 20 > 20

HEp-2 b Epithelial 5.5 ± 1.6 4.5 ± 0.4 6.3 ± 2.3 5.7 ± 2.3 14.1 ± 2.1 19.5 ± 0.2

HUV-EC-C b Endothelial 1.8 ± 0.2 1.6 ± 0.4 2.9 ± 1.5 1.0 ± 0.4 9.7 ± 3.4 4.1 ± 1.8

U373 b Glial or astrocyte 3.0 ± 1.9 3.0 ± 0.8 1.1 ± 0.4 2.1 ± 0.4 7.4 ± 3.8 16.0 ± 3.7

U937 b Macrophage 2.0 ± 0.3 1.8 ± 0.8 2.6 ± 1.5 6.7 ± 2.6 7.0 ± 2.7 13.2 ± 4.9

G361 b Melanocyte 4.0 ± 0.3 2.0 ± 0.1 3.0 ± 1.9 4.6 ± 0.4 8.8 ± 4.7 0.3 ± 0.1

Average c 3.5 ± 1.4 2.8 ± 1.1 3.9 ± 2.2 3.7 ± 2.1 11.2 ± 4.6 11.7 ± 6.2
a IC50, 50% inhibitory concentration; Numbers are means ± SE; n = 2 or 3; b The cells obtained from the American Type Culture Collection; c Average 
values (± SE) for all cell lines tested; CSA, chondroitin sulfate A; CSC, chondroitin sulfate C; fucoidin, a sulfated L-fucose oligosaccharide; GAGs, 
glycosaminoglycans. 

Table 12 Effects of increasing concentrations of soluble GAGs on trail 
lengths produced by gliding Toxoplasma (acc. to Carruthers et al [331]; 
with own modification).

Compound
Trail length a  at GAG concn b of:

0 6.25 12.5 25

Dextran 9.7 9.1 9.2 8.8

Dextran sulfate 9.6 8.5 8.3 4.2 c

Heparin 10.2 9.3 7.9 4.7 c

Heparan sulfate 9.2 8.3 7.8 4.4 c

CSA 9.4 8.8 8.2 4.6 c

CSC 9.5 8.8 8.4 4.6 c

a Mean trail length in parasite body length (approximately 5-7 mm); 
b In mg/mL; c Significantly different from control (p ≤ 0.05, Student’s 
t test); CSA, chondroitin sulfate A; CSC, chondroitin sulfate C; GAGs, 
glycosaminoglycans.

type cells treated enzymatically to remove GAGs, were partially 
resistant to parasite invasion[331]. In this context, one may suggest 
that metabolic abnormalities, such as the impaired sulfation and 
sulfoxidation found in patients with autism may reflect a defense 
of the host cells against invasion of the parasite. Moreover, the 
significantly decreased platelet sulfotransferase activity due to 
elevated estrogen levels found during pregnancy or in the control 
females on estrogen-containing oral contraceptive pills associated 
with impairment in sulfation capacity[347] may be consistent with 
the notion of host cell defense. The adverse influence of pregnancy 
upon sulfation may represent a long-lasting, epigenetic enzymatic 
adaptation of pregnant women defending the fetus against T. gondii 
infection. The same reasoning may be applied to poor sulfation 
and sulfoxidation found in the patients with primary biliary 
cirrhosis[348-350] because the parasite can initiate a pathogenic process 
that may eventually result in clinically overt autoimmunity[129,131]. 
It should be emphasized that for example steroid sulfation or 
desulfation pathways have both been implicated in improving and/
or worsening metabolic outcomes associated with type 2 diabetes 
and obesity, and in the healthy brain, colon, adrenal, and kidney 
predominate sulfation, while desulfation dominates in the breast, 
ovary, prostate, testis, placenta, and uterus[351].
    In summary, T. gondii infection of almost all nucleated cells, rapid 
or slow intracellular multiplication and life-long persistence of the 
pathogen in the host cells, use of HS proteoglycans and sialic acid as 
the parasite, viral and/or bacterial receptors for infection, invasion, 
colonization, and control of many cellular functions of human host 
cells from a variety of lineages and different tissues, may play 
an important role in triggering and development of several ADs. 
Impaired sulfation and sulfoxidation processes reported in some 
patients with ADs may represent defense reactions of the host cells 
against infection with the parasite.

POSSIBLE LINK BETWEEN THE INCREASED 
SERUM AUTOANTIBODIES AGAINST LAM-
ININ IN PATIENTS WITH SEVERAL ADs AND 
CHRONIC T. GONDII INFECTION
Important role of laminin in development of reproductive 
function disturbances 
ADs
Autoimmunity against laminins has been described in several ADs 
including vasculitis, connective tissue diseases, mucous membrane 
pemphigoid, and antilaminin g1 pemphigoid, cutaneous lupus 
erythematosus, scleroderma, and psoriasis, and all these diseases 
were found to be associated with pathogenic role of antilaminin g1 
autoantibodies[320,352,353]. 
    Laminins are a family of glycoproteins present in the extracellular 
matrix and the major constituents of basement membranes, 
and integrins (ab transmembrane receptors) act as receptor for 
laminins. The a6b1 integrin is the major leukocyte laminin receptor 
on macrophages, neutrophils, endothelial cells of large blood 
vessels, and T cells[354]. Cell adhesion molecules, integrin a6b1 
and intercellular adhesion molecule (ICAM)-1 were implicated in 
tachyzoite binding to host cells. Soluble host laminin can associate 
with the surface of extracellular parasites. This adherent laminin is 
then available to interact with integrin a6b1, creating a molecular 
bridge between parasite and host cell[319]. Human ICAM-1 recognizes 
the parasite adhesive microneme protein MIC2 that is liberated onto 
the surface of the parasite prior to host cell invasion[355]. Smith et 
al[356] showed that human retinal endothelial cells contained relatively 
high levels of transcripts encoding ICAM-1 and the integrin an 
subunit; this subunit is capable of binding laminin when complexed 
with integrin b3 as a receptor complex on microvascular endothelial 
cells[357]. 
    T. gondii infection. Furtado et al[358] found that laminin, an 
extracellular matrix protein, increased T. gondii attachment to the 
murine macrophage cell line J774 in a dose-dependent fashion. 
It was also demonstrated that tachyzoites bearing surface laminin 
bind to multiple laminin receptors in attaching to different target 
cells, including human foreskin fibroblasts and Chinese hamster 
ovary cells[319], and may therefore be responsible for the etiology 
of ovarian dysfunction[359] and uterine atrophy in chronic murine 
toxoplasmosis due to ovarian dysfunction[360]. These suggestions 
may be supported by the report that among 413 patients with inner 
ear disorders of unknown etiology, serum antilaminin antibodies 
were found in 68% of individuals with sensorineural hearing loss[361]. 
Other authors also documented that toxoplasmosis was associated 
with sensorineural hearing loss in children[362]. Similar associations 
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were found between the increased titers of serum autoantibodies 
against laminin in patients with systemic sclerosis[363], and in 
individuals with SLE[364], and the elevated serum IgG against T. 
gondii in these two clinical entities[98,99,141]. It must be noted that 
serum anti-toxoplasma antibodies were markedly increased also in 
patients with antiphospholipid syndrome[98], and endothelial cells 
appeared to be the target for antiphospholipid antibodies, likely 
leading to a procoagulant state[365]. Nb. human endothelial cells are 
known to be activated by IFN-γ to inhibit T. gondii replication[210]. 
In addition, an association of IgG antilaminin-1 autoantibodies with 
endometriosis in infertile patients, and with women having recurrent 
miscarriages, have been reported[366-368], and T. gondii infection is 
known to impair reproductive function in animals[319,359,360,369,370]. The 
above-presented arguments are very important and may be supported 
by the significantly increased levels of antilaminin autoantibodies in 
nonautoimmune individuals with acute parasitic infections (Table 
13), frequently reported problems with infertility in persons suffering 
from various ADs[371-377], pregnancy loss and endometriosis[368], and T. 
gondii worldwide dissemination in animal and human populations. 

ANTIRIBOSOMAL P AUTOANTIBODIES 
FOUND IN A SUBSET OF PATIENTS WITH SLE 
MAY BE AT LEAST IN PART GENERATED BY 
THE CONCOMITANT LATENT CHRONIC 
TOXOPLASMOSIS
Patients with SLE
Ribosomal P (Rib-P) proteins comprise a family of acidic 
phosphoproteins that are critical for regulation of cell cycle, 
differentiation, proliferation, and responses to stress[379-382]. Ribosomal 
proteins account for 12-15% of the total cellular protein in an 
eukaryotic cell[383,384]. The Rib-P consists of three phosphoprotein 
components of the 60S ribosomal subunit, designated P0 (m.w. 38 
kDa), P1 (19 kDa), and P2 (17 kDa)[385], directed mainly against their 
carboxy 22 amino acids[386]. The prevalence of antibodies to Rib-P in 
patients with SLE ranged from 10 to 40%, being highest in Chinese 
(35%) and Japanese (28%) individuals and markedly lower in 
Brazil (10%) and Canada (8%)[387]. It was found that anti-Rib-P IgG 
antibodies are highly specific for SLE[386,388], were more frequently 
found in juvenile-onset SLE than in adult-onset disease[389], and 
Rib-P protein P0 was even suggested to be a candidate for the 
target antigen of antiendothelial cell antibodies in mixed connective 
tissue disease[390]. Their presence in serum frequently showed 
correlation with a concomitant development of other diseases, such 
as hepatitis[391-393], and nephritis[392,394]. It is also very interesting that 
anti-Rib-P antibodies exist in a masked state in virtually all healthy 
adults[395], and can be unmasked and detected only after treatment of 
serum with immobilized Rib-P antigens[395-397]. One cannot exclude 
that these “healthy adults” suffered from subclinical T. gondii 
infection.

T. gondii infection
The parasite ribosomal protein promoters and knockdown revealed 
molecular pathways associated with proliferation and G1 cell-
cycle arrest[398]. Analysis of DNA sequences from the 5’ end of 
239 directionally cloned T. gondii RH strain tachyzoite-derived 
cDNAs showed significant similarity to several classes of genes/
proteins, including 24 ribosomal proteins[399]. Similarities with human 
ribosomal proteins (all with significant matches) represented about 
12% of the total T. gondii expressed sequence tags (ESTs), and five 

Table 13 The prevalence of significantly elevated autoantibodies in 
nonautoimmune individuals with acute parasitic infections (acc. to Berlin 
et al [378]; with own modifications).
Infection/autoantibody Parasitic (n = 17) Control (n = 80) p-value

Annexin-V 8 (47.1%) 3 (3.8%) 0.001

LMN 4 (23.5%) 1 (1.3%) 0.003

aPT 4 (23.5%) 1 (1,3%) 0.003

aPL 3 (17.6%) 2 (2.5%) 0.036
LMN, antilaminin antibodies; aPT, antiprothrombin antibodies; aPL, 
antiphospholipid antibodies.

were sequenced more than once leaving a total of 24 independent 
ribosomal protein ESTs (Table 14). 
    During the screening of the parasite cDNA expression library with 
monoclonal antibodies (mAb), an expressed cDNA clone Tg621 (a 
polypeptide of 313 amino acids) was detected, that reacted with 38 
kDa protein localized in the cytoplasm of tachyzoites[400,401]. Ahn 
et al[402] demonstrated that mAb Tg621 bind ribosomal P protein 
(RPP) of T. gondii (TgRPP), and the expressed and purified TgRPP 
assayed in western blot with the sera of patients with toxoplasmosis 
resulted in the 74% of positive reactions as compared with 8% in 
control individuals. The antibody formation against TgRPP in those 
patients was therefore regarded as specific and suggested a potential 
autoantibody[402]. Because of quite frequent significant similarities 
between the expressed sequence tags of T. gondii tachyzoite clones 
(and probably also bradyzoite clones) and human ribosomal proteins 
(Table 14), it seems that chronic toxoplasmosis is at least in part 
responsible for the increased production of anti-Rib-P autoantibodies 
in patients with SLE. The worldwide dissemination of the parasite, 
the fact that these autoantibodies are present in a masked state also 
in healthy individuals[396,397], and the findings that they bind to T 
lymphocytes[403] and other human cells[404], and penetrate into live 
hepatic cells causing cellular dysfunction in culture[405], may support 
this suggestion.
    Several authors reported an association of anti-Rib-P with 
neuropsychiatric manifestations of SLE[406-409], in particular psychotic 
depression[386,388,410]. It must be emphasized that an increasing 
body of evidence suggested a significant relationship between 
T. gondii infection and development of mood disorders[411-413]. 
Moreover, damage of the olfactory system associated with smell 
defects in patients with many neurodegenerative diseases[414] and/
or autoimmune disturbances including SLE and MS, was probably 
due to T. gondii infection[93,97,98,101,143,415]. Thus, it seems that chronic 
toxoplasmosis strongly participates in the generation of anti-Rib-P 
autoantibodies and development of neuropsychiatric manifestations 
in several ADs.

HYPERPROLACTINEMIA (HPRL) IN ADs MAY 
REFLECT THE HOST DEFENSE AGAINST T. 
GONDII INFECTION
Several antipsychotic medications induce HPRL and have 
antitoxoplasmatic activity 
Prolactin, HPRL and ADs
Prolactin (PRL) is a hormone produced by the pituitary, the decidua, 
the myometrium, the mammary gland and leukocytes[416]. PRL 
regulates the differentiation of secretory glands, including the 
mammary gland, ovary, prostate, submaxillary and lacrimal glands, 
liver, and pancreas, as well as proliferation in different cell types, 
such as mammary epithelium, astrocytes, adipocytes, pancreatic beta 
cells, and T lymphocytes[417,418]. 
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    PRL acts as an immunomodulator which may interfere with 
lymphocyte activation and cytokine production[419-421]. Activation of 
T lymphocytes mediated by the interaction of PRL, PRL-R, JAK2/
STAT5 pathways led to generation and release of several cytokines 
including IL-1, IL-4, IL-5, IL-6, IL-10, IFN-α, which stimulate 
activated B cells to proliferate and differentiate[422,423]. In human T 
cells obtained from blood of healthy people, PRL in physiological 
concentrations significantly increased TNF-α and IFN-γ producing 
CD4+ and CD8+ cells and IL-2 producing CD8+ cells[424].
    Brand et al[421] showed that PRL at physiological concentrations 
during pregnancy, anesthesia and medication, selectively and 
significantly enhanced IL-12 and TNF-α synthesis via NF-κB and 
interferon regulatory factor-1, at LPS-stimulated human immune 
cell cultures, in a dose-dependent manner. It was suggested that PRL 
at these elevated concentrations may strongly initiate an immune 
response, and then antigen-presenting cells may abnormally stimulate 
an immune response, finally leading to autoimmune reactivity[421]. In 
humans, HPRL was associated with abnormalities in T-cell function 
and phenotype, abnormal T-cell proliferation[425,426], inhibition of NK 
cells[427], decreased neutrophil chemotaxis[428], and increased activity 
of antigen-presenting cells[429]. Importantly, at high concentrations, 
PRL may inhibit the proinflammatory activation of T helper cells[430].
    PRL has been shown to stimulate T and B cells[431,432], NK cells, 
macrophages, neutrophils, CD34+ hematopoietic cells, and antigen-
presenting DCs[418,433,434]. The hormone promoted proliferation in 
T lymphocytes, protected against apoptosis, and enhanced cell 
survival[417,418,435]. 
    PRL generation was stimulated in vitro by the cytokines IL-2 and 
IL-6, and inhibited by IL-1[436-438]. PRL appeared to be necessary for 
IL-2 receptor expression and T-cell proliferation[431], and may also 
modulate B-cell expansion[432]. On the other hand, it was established 
that in T lymphocytes both IL-2 and IL-4 reduced PRL mRNA levels 
to 25 and 28% of control values, respectively, while IL-1β decreased 
PRL mRNA levels to 58% of control values[416].
    PRL receptors are present in a wide range of peripheral cells of 
the immune system including T and B lymphocytes, NK cells, and 
intestinal epithelial cells[421,439,440]. The PRL receptor, a member of 
the cytokine receptor superfamily, including IL-2, IL-2 and IFN 
receptors, was found on lymphocytes, monocytes, neutrophils, NK 
cells, and thymic epithelial cells[439,440]. 
    HPRL was demonstrated in various ADs, particularly in SLE, MS, 
SS and Sjögren’s syndrome[441] (Table 15). HPRL is also a common 
finding among patients with psychiatric disease, and antipsychotic 
drugs-induced HPRL occurs overall in up to 70% of patients 
with schizophrenia, depending on the medication used[443-445]. All 
antipsychotic drugs block dopamine D2 receptors and thus delete the 
inhibitory effect of dopamine on PRL secretion[446]. Boerrigter et al[447] 
in 165 patients with schizophrenia or schizoaffective disorder found 
an overall decrease in the antiinflammatory IL-2 mRNA levels in 
serum (p < 0.006) and an increase in cytokines IL-6 (p = 0.01), IL-8 
(p = 0.024) and TNF-α (p < 0.001) compared to healthy controls.
    Haga & Rygh[448] established that patients with primary SS had 
moderately increased serum PRL levels compared with matched 
controls (271.5 vs. 205.9 mIU/L; p < 0.02), especially evident in 
those diagnosed before the age of 45 yrs and with active disease. 
Interestingly, these authors suggested that the disease may be 
preceded by HPRL for many years[448]. This recommendation is in 
line with the recent findings that T. gondii infection may participate 
in development of this clinical entity[98,99].
    In several ADs the level of cortisol was found to be subnormal. 
The reduced corticosteroid concentration had a permissive effect in 

development of these clinical entities because increased PRL level 
may enhance immune response in patients with low cortisone levels 
and corticosteroids antagonize the stimulatory effect of PRL[442,449]. 
Tables 15 and 16 summarized the organ specific and multi-organ 
ADs associated with HPRL, and associations of HPRL with various 
ADs activities. 
    Studies of patients with HPRL of various etiologies have 
suggested an increased generation rate of several autoantibodies, 
including antinuclear and/or antithyroid antibodies, anticardiolipins, 
anti-dsDNA, anti-Ro, without clinical evidence of autoimmune 
disease[422,478-480]. PRL induced immunoglobulin synthesis and 
generation of anti-dsDNA by normal and SLE lymphocytes[481]. After 
PRL stimulation spontaneous IgG production of SLE peripheral 
blood mononuclear cells was markedly enhanced compared to that in 
healthy controls, and the physiological concentration of PRL (20 ng/
mL) induced IgG production more effectively than PRL at 100 ng/
mL[482]. 

Medications and HPRL
Several drugs may cause HPRL, including antipsychotics, 
antidepressants, opiates and cocaine, antihypertensive medications 
(verapamil, methyldopa, reserpine), gastrointestinal agents 
(metoclopramide, domperidone, cimetidine, ranitidine), and 
estrogens[441] (Table 17). 
    Perkins[485] found that risperidone (mean dose 4-7.6 mg/day) was 
associated with the greatest elevation of plasma PRL levels after 
4-8 weeks of treatment as compared with haloperidol (5-12.9 mg/

Table 14 Significant matches of T. gondii (RH strain tachyzoite-derived 
cDNAs) expressed sequence tags (ESTs) with database sequences 
from human ribosomal proteins (acc. to Wan et al [399]; with own 
modification).
T. gondii 
clones

Human ribosomal 
protein identification Accession Length %ID Score

Tga024 S3a sp: P33433 88 60 276

Tgb073 S16 sp: P17008 105 64 338

Tgc038 S16 sp: P17008 69 62 214

Tgc059 S23 sp: P39028 89 84 390

Tgc084 S26 sp: Q06722 99 61 312

Tgd029 S27a pir: A22632 95 43 193

Tga093 S30 sp: Q05472 42 80 177

Tgd011 L7a sp: P12970 115 51 310

Tgb056 L8 sp: P25120 40 31 171

Tga025 L38 sp: P23411 32 68 121
T. gondii cDNA clones of ESTs with significant BLAST score are listed 
with the corresponding putative identification, organism, database 
accession, length and percent identity of the match. Match lengths 
are in amino acid residues. Databases are SwissProt (sp) and Protein 
Information Resource (pir). It must be noted that mitochondrial 
genes of the parasite tachyzoite cDNA clones of NADH-ubiquinone 
oxidoreductase (Tga067) and cytochrome b (Tgb097) showed 94% 
similarity with human mitochondrial genes [399]. 

Table 15 ADs associated with HPRL (acc. to Orbach & Shoenfeld [442]).
Multi-organ diseases Organ specific diseases
Systemic lupus erythematosus Diabetes mellitus type 1
Rheumatoid arthritis Graves’ disease
Systemic sclerosis Hashimoto’s thyroiditis
Sjögren’s syndrome Addison’s disease

Reactive arthritis
Lymphocytic hypophysitis
Celiac disease
Multiple sclerosis
Uveitis
Rejection of heart transplantation
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Table 16 Autoimmune disease activities associated with HPRL (acc. to Shelly et al [450]; with own modification).

Disease Association of HPRL with disease activity Refs

SLE (HPRL in 15-33% of the patients) HPRL was related to neurological, renal, and hematological involvement, serositis, anti-
double stranded DNA, and hypocomplementemia [451-454]

Rheumatoid arthritis HPRL was found in children with ANA seropositive JRA [455-459]
Sjögren’s syndrome 
(HPRL in 3.6-45.5% of the patients) HPRL was not associated with hormonal status but rather reflects disease pathology [460]

Systemic sclerosis PRL-receptors and S100A6 protein were detected in these patients [461-473]

Multiple sclerosis (HPRL in 30% of the patients) PRL level was found to be related to the secondary-progressive type of disease [464]

Thyroid diseases To be further investigated in large studies [465]

Chronic hepatitis C (HPRL in 10.1% of the patients) There was an association between HPRL and the infection with HCV genotype 3 (p < 0.01). [466]

Celiac disease PRL may play a part in immune modulation in the intestinal damage of the disease [467,468]

Uveitis Not correlating [469,470]

Peripartum cardiomyopathy Present [471-473]

Behçet’s disease Possible role in expression and pathogenesis of the disease [474,475]

Psoriasis vulgaris HPRL may have a role in the pathogenesis of this disease, and in the hyperproliferation of 
keratinocytes [476,477]

ANA, antinuclear antibody; JRA, juvenile rheumatoid arthritis.

Table 17 Effects of psychotropic drugs on serum PRL levels (acc. to 
Molitch [441]; with own modification).

Medications Increase in PRL a

A
nt

ip
sy

ch
ot

ic
s

Typical
Phenotiazines (chlorpromazine, fluphenazine, 
thioridazine) +++

Butyrophenones (haloperidol) +++
Thioxanthenes (thiothixene) +++

Atypical
Risperidone +++
Molindone ++
Quetiapine +
Olanzapine +

A
nt

id
ep

re
ss

an
ts

Tricyclics
Amitriptyline +
Desipramine +
Clomipramine +++

Monoamine oxidase inhibitors
Pargyline +++
Clorgyline +++

a +, PRL increase to abnormal levels in small percentage of patients; ++, 
increase to abnormal levels in 25% to 50% of patients; +++, increase to 
abnormal levels in more than 50% of patients. Interestingly, in one study 
the use of 1,25-dihydroxyvitamin D3 for 7 days caused serum PRL levels 
to double in five healthy men [483]. On the other hand, lithium carbonate 
(a drug used in schizophrenia and schizoaffective disorders) appeared to 
decrease PRL levels by about 40% [484].

day; almost 100 ng/mL end point PRL concn), olanzapine (10-17.5; 
approximately 30 ng/mL), ziprasidone (160 mg/day), quetiapine (307 
mg/day), and aripiprazole (30 mg/day), which caused the smallest 
increase (nearly 10 ng/mL)[485].
    It appeared that several other groups of medicaments also caused 
HPRL, including prokinetic drugs (metoclopramide, domperidone), 
antihypertensive (reserpine, verapamil, alpha-methyldopa), 
opiates (morfine), H2-receptor antagonists (cimetidine, ranitidine), 
anticonvulsive drugs, estrogens, cholinomimetics. In addition, HPRL 
has been demonstrated during conditioning and after blood stem-cell 
transplantation, as well as following blood marrow transplantation[486], 
and it must be noted that T. gondii infection has frequently been 
detected in such patients[487-490]. 

T. gondii infection and PRL. 
PRL bound to the parasite tachyzoites impairs the process of 
their adhesion and penetration into the host cells, as well as the 
replication abilities 
PRL stimulated T cell proliferation [491] and the release of 

proinflammatory cytokines, which efficiently control the course of T. 
gondii infection[492-494]. The action of PRL may thus be bidirectional, 
i.e. the hormone may limit the proliferation of the parasite via 
surface host cell receptors and increased release of various protective 
cytokines, and via Toxoplasma tachyzoites by inhibiting their ability 
for penetration of the host cell[495].
    PRL was capable of inhibiting multiplication of T. gondii in 
murine microglial cell cultures[493], and restricted intracellular growth 
of the parasite in mice and human cell lines[495,496]. Dzitko et al[495] 

demonstrated that in vitro preincubation of T. gondii BK strain 
(type I) tachyzoites with recombinant human PRL (rhPRL) caused 
a significant decrease in the replication of tachyzoites in one murine 
(L929) and two human (HeLa and Hs27) cell lines (Table 18).
    Moreover, it was reported that serum human PRL was bound to 
live RH tachyzoites (type I) and ME49 (type II) strains in a specific 
way and the binding was concentration-dependent[497]. Inhibitory 
effect of the hormone on the parasite proliferation has been found in 
the peripheral blood mononuclear cells from patients with HPRL[496]. 
It was also demonstrated that women with HPRL had lower T. gondii 
seroprevalence[498]. The physiological increase in serum PRL levels 
during pregnancy may thus markedly reduce the risk of the parasite 
proliferation in the expecting mother and its transfer to the fetus[496].
Dzitko et al[495] found that rhPRL did not exert any cytotoxic effect 
toward the parasite or host cells, and suggested that PRL may affect 
T. gondii adhesion to the host cells and penetration of parasites into 
the host cells as demonstrated by the reduced number of infected 
cells[495,498]. It must be noted that women with HPRL had lower 
anti-T. gondii IgG seroprevalence than those with normal PRL level 
(33.9% and 45.58%, respectively; p < 0.025)[498]. It appeared that in 
the group of women with high PRL serum level (i.e. > 86 ng/mL) 
seroprevalence (12.5%) was markedly lower (p < 0.004) than in the 
controls, and this finding suggested that HPRL may be an important 
factor preventing T. gondii infection in women[498]. Recently, it was 
reported that sheep PRL binds to live tachyzoites of RH (type I) and 
ME49 (type II) strains[497]. Dzitko et al[497] demonstrated the high 
similarity of two PRL receptor domain regions (2-37 aa and 127-
162 aa) with some T. gondii proteins (42% and 37% of amino acid 
identities, respectively, suggesting that certain proteins of the parasite 
may function as PRL receptors. Thus, the PRL bound to the parasite 
may affect the process of adhesion and then effective parasite’s 
penetration of the host cell. 
    In 1953, the large study of Kozar[499] performed in Poland was 
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first to show that the patients with schizophrenia had a significantly 
higher positive antibody skin test against T. gondii compared with 
healthy controls (52% vs. 25%; p < 0.0001; n = 495/961 vs. 170/681, 
respectively). Further investigations confirmed that the parasite may 
be responsible for the development of this clinical entity[500-503]. It 
must be emphasized that several medications successfully used in the 
treatment of various neurological and psychiatric disorders, including 
schizophrenia and epilepsy, showed to have antitoxoplasmatic 
activity in cell culture (Table 19).
    It seems that the elevation of serum PRL concentration plays an 
important role in modulating the host defense reaction against T. 
gondii infection[492,493]. This notion is consistent with the findings that 
PRL and TNF-α upregulated expression of intracellular adhesion 
molecule -1 and production of endogenous IL-6 (this cytokine plays 
a dual role in TH1/TH2 differentiation[511] and enhances T. gondii 
intracellular replication[208]) and IL-3 by microglia[493,512]. In addition, 
PRL increased indoleamine 2,3-dioxygenase (IDO) expression 
in CD14+ cells[513] and peripheral monocytes[514], the mechanisms 
that enhances antitoxoplasmal activity and/or impairs defense of 
the parasite[515-519]. The hormone also stimulated IFN-γ and other 
TH1-type cytokine production during T. gondii infections[520], thus 
probably reflecting the host’s vigorous defense against the parasite. 
Subsequent finding that the women with HPRL had markedly lower 
seroprevalence of T. gondii antibodies than those with normal PRL 
levels (33.9 vs. 45.58%, p < 0.025)[498] strongly supported this 
suggestion.
    IgG antiendothelial cell antibodies (AECA) have been reported in 
sera from patients with various systemic autoimmune-inflammatory 
diseases, including SLE and vasculitis[521]. Krause et al[522] found 
elevated presence of microvascular and macrovascular AECA 
in the sera from 19/25 (76%) women with HPRL, as well as 
increased titers of anticardiolipin and low levels of anti-dsDNA 
antibodies. Interestingly, inhibition studies showed that the affinity 
purified AECAs bound the endothelial cell antigens in a dose-
dependent manner. Although none of the studied patients had 
clinical manifestations of autoimmune disease, the presence of 
autoantibodies suggested that they may represent an increased risk 
for development of these entities[521,522]. It should be emphasized that 
vascular endothelial cells are particularly susceptible to infection with 
T. gondii tachyzoites, and their intracellular division rate is rapid[268]. 
The parasite adhesion to vascular endothelium was observed even 
during disturbed blood flow characteristic for atherosclerosis[523-525].

T. GONDII CHRONIC INFECTION-INDUCED 
CYTOTOXIC T LYMPHOCYTE EXHAUSTION 
LEADS TO DEVELOPMENT OF ADs BECAUSE 
OF DECREASED FUNCTIONALITY, INCLUD-
ING PROLIFERATIVE CAPACITY, CYTOKINE 
PRODUCTION, CYTOTOXIC CAPABILITY 
AND METABOLIC DEFICIENCY
Induction of exhaustion may however also reflect a host cell 
defense reaction in autoimmune and inflammatory diseases
Mutually overlapping immunosuppressive effects caused by 
concomitant intracellular T. gondii and chronic viral infections play 
a key role in development and persistence of several ADs mainly 
via pathogen/host protein mimicry[93,98,378,526,527]. Chronic T. gondii 
infection exerts also a stimulating effect on the host immune control 
of viral infections in patients with ADs and vice versa[528-530]. The 

Table 18 Inhibition of the in vitro proliferation rate (%) of T. gondii BK 
strain (type I) tachyzoites pre-incubated with the rhPRL before infection 
of the murine L929 and human HeLa and Hs27 cells (treatment before 
infection) (acc. to Dzitko et al [495]; with own modification).

rhPRL 
(ng/mL)

Pre-incubation time (min)

0 30 60 180

L929 cells

2 1.38↑ ± 8.88 4.03 ± 5.26 2.41 ± 8.48 3.88 ± 10.88

5 5.24↑ ± 4.09 12.37 ± 9.50 8.98 ± 8.83 7.39 ± 8.76

20 9.72 ± 8.47 19.87∗ ± 4.28 19.66∗∗ ± 5.73 26.76∗∗ ± 3.02

100 9.57 ± 9.84 23.66∗ ± 10.99 25.53∗∗ ± 3.19 27.00∗∗ ± 2.50

HeLa cells

2 3.02 ± 6.94 9.46 ± 5.74 3.48 ± 10.72 3.91 ± 7.02

5 0.83↑ ± 7.07 8.76 ± 7.68 7.47 ± 4.94 8.66 ± 5.53

20 3.53 ± 7.20 20.81∗∗ ± 4.21 19.05∗∗ ± 2.63 21.14∗∗ ± 5.62

100 6.32 ± 4.44 21.93∗∗  ± 5.48 23.01∗∗ ± 5.93 36.15∗∗ ± 11.53

Hs27 cells

2 1.76 ± 3.59 1.09 ± 5.23 2.22 ± 3.48 4.80 ± 5.87

5 0.50 ± 6.06 2.37 ± 7.01 4.66 ± 5.32 3.48 ± 4.23

20 2.07 ± 3.69 23.05∗∗ ± 4.97 27.71∗∗ ± 7.42 29.64∗∗ ± 6.23

100 10.60 ± 2.36 31.74∗∗ ± 5.79 31.71∗∗ ± 7.06 32.12∗∗ ± 3.53
The results from 12 evaluations were shown as a percentage of replication 
intensity as compared to the control lacking rhPRL (100%) ± SD). ↑, 
increased intensity of the parasite proliferation. ∗ p < 0.05, ∗∗ p < 0.01. 
rhPRL, recombinant human PRL.

Table 19 Drugs tested for in vitro activity against T. gondii (acc. to Jones-
Brando et al [504]; with own modification).
Drug Solvent ID50 

a (µg/mL) TD50 
b (µg/mL) TI c

Valproic acid ethanol 4.5 62.4 13.9

Sodium valproate ethanol 4.1 52 12.7

Carbamazepine ethanol 72 100 1.3

Lithium carbonate 1 N HCl > 100 > 100

Haloperidol ethanol 5.6 103 18.4

9-OH-Risperidone tartaric acid 20.1 134 6.7

Risperidone tartaric acid 74 129 1.7

Fluphenazine HCl Toxo CGM 3.5 17.9 5.1

Clozapine ethanol 5.8 20 3.4

Olanzapine DMSO 33.2 100 3

Chlorpromazine HCl DMSO 2.6 6 2.3

Quetiapine fumarate DMSO 18.6 33 1.8

Trimethoprim DMSO 5.3 63.8 12.1
a Median inhibitory dose, a measure of tachyzoite inhibition. b Median 
toxicity dose, a measure of cytotoxicity. c Therapeutic index, a measure of 
efficacy determined by TD50/ID50 ratio. DMSO, dimethylsulfoxide; Toxo 
CGM, Toxoplasma cell growth medium. Valproic acid at a concentration of 
1 mg/mL inhibited 7% of the tachyzoites and trimethoprim at 3.2 mg/mL 
produced 2% inhibition, but the combination of these two compounds at 
those concentrations resulted in a potentiating effect inhibiting 55% of the 
tachyzoites. Fond et al [505] reported that also other antipsychotic drugs, 
such as amisulpride, cyamemazine, levopromazine, loxapine, tiapride and 
zuclopenthixol in vitro exerted antitoxoplasmatic activity in the range of 
0.19 to 1 μM concentrations. The 50% inhibitory concentration (IC50) for 
the last preparation was 8 ± 1.8 μM while its serum levels varied from 
0.01-0.12 μM [506], but antipsychotic drugs usually achieve much higher 
and persistent concentrations in the brain tissue [507]. In human fibroblast 
cell cultures, IC50 for fluphenazine, thioridazine, and trifluoperazine 
against developing tachyzoites of the parasite RH strain was 1.7, 1.2 
and 3.8 μM, respectively [508]. Recently, Murata et al [509] found that in 
vitro hydroxyzine (an antihistamine and anxiolytic compound) reduced 
parasite replication (IC50 value for T. gondii tachyzoites was 1.0 mM) and 
had no effect on host cell viability. Importantly, the drug also reduced 
the number of in vitro-induced bradyzoites [509], and it should be noted 
that bradyzoites within mature tissue cysts are dynamic and replicating 
entities in vivo [510].
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Table 20 Specific T. gondii molecules that manipulate host innate immunity responses (acc. to Pollard et al [531]; with own modification).

T. gondii molecule Host target Effect in host Refs

Profilin TLR11 IL-12 production through MyD88 [532,533]

GPI TLR2 and TLR4a Induction of TNF-α through NF-κB [89,534]

Cyclophilin CCR5 IL-12 generation through CCR5 [535]

Lipoxygenase Unknown Downregulation of CCR5; decrease in IL-12 [535]

ROP16 Unknown T. gondii type I and type II strains induce STAT3/6c; decrease in IL-12 [536]

ROP18 Unknown Infections by strains carrying type I and type II allele results in increased mortality [537-539]

HSP70 Unknown Can inhibit NF-κB nuclear translocation and iNOS [540]
TLR, Toll-like receptor (TLRs are important for the recognition of intracellular pathogens and protection of the host because binding of a ligand to its 
TLR stimulates proinflammatory activity). a TRL2 and TRL4 play a pivotal role in the development of ADs [541]; T. gondii inhibits TLR4 ligand-induced 
mobilization of intracellular TNF-α to the surface of neutrophils infected with the parasite, thus revealing an immunosuppressive activity  [534]; cThe 
parasite hijacks STAT3 signaling, and IL-10/STAT3 signaling cascade is a crucial pathway involved in controling IL-12 and TNF [542]. MyD88, myeloid 
differentiation factor 88, an adaptor molecule; GPI, glycosylphosphatidylinositol; HSP70, heat shock protein 70; iNOS, inducible NO synthase; ROP, T. 
gondii rhoptry proteins excreted during parasite invasion to host cells; CCR5, a transmembrane receptor expressed by multiple cell types including DCs 
that transmit signals through Gi-like proteins [535]. 

parasite exploits multiple strategies to downregulate the host’s 
defense responses, including subverting intracellular signaling 
pathways in infected cells to evade immunity[9]. T. gondii manipulate 
the expression levels of key host microRNAs[93,527] to favor its 
own growth while avoiding immune control, in order to survive 
and proliferate. Several parasite biomolecules that stimulate or 
manipulate host immune responses and their effects on various host 
cell functions are presented in Table 20[531]. 
    T. gondii manipulate immune system favoring TH2 lymphocyte 
reactions over TH1 responses in the host[535,543], and therefore may 
exert at the same time a triggering and a protective role in several 
ADs. The pathogen triggers the secretion of antiinflammatory 
cytokines, such as IL-10 and TGF-β thereby suppressing development 
of the TH1 immune responses and deactivating macrophages[544-548]. 
Another pathomechanism that the parasite uses to suppress host 
immunity is the induction of apoptosis in selected cell lineages. 
It was found that following T. gondii invasion, CD4+ splenocytes 
underwent programmed cell death. Fas-FasL interaction has been 
implicated in this process as demonstrated for apoptosis of Peyer’s 
patch T cells in perorally infected mice[549,550]. Similarly, the microbe 
caused induction of apoptosis in monocytes[551]. 
    During chronic infection, T. gondii has evolved several strategies 
to avoid or to interfere with potentially efficient antiparasitic immune 
responses of the host. Such immune evasion included: a) altering 
the expression and secretion of immunomodulatory cytokines or 
by altering the viability of immune cells, and b) interference with 
intracellular signaling cascades, thereby abolishing a number of 
antimicrobial effector mechanisms of the host[552] (Table 21). 
    Infection of different host cell types from humans and mice with T. 
gondii blocks apoptosis induced by diverse proapoptotic stimuli[552] 
(Table 22).

CONCOMITANT VIRAL AND T. GONDII 
INFECTIONS MODULATE INFLAMMATORY 
RESPONSES AND AFFECT CLINICAL OUT-
COME OF ADs
Important role of CD4+ and CD8+ T cell immune exhaustion 
during persistent infections
Recent estimates suggest that during lifetime approximately 8-12 
chronic infections are harboring in each of us and comprise what 
is referred to as our virome. Several viruses, such as HIV, hepatitis 
B or C viruses (HBV, HCV), Epstein-Barr virus, cytomegalovirus, 

papilloma virus, and adenovirus can negatively impact human health 
by causing chronic disease and establishing latency (HIV, EBV, 
CMV, papilloma virus)[587]. 
    Normal T cell immune response against intracellular microbes 
exhibits polyfunctionality, rapid proliferative potential, and low 
apoptosis[588]. During acute infections, T cells clear the pathogen, 
ultimately leading to the development of robust antigen-independent 
memory T cells characterized by the ability to mount rapid recall 
response and reactivate functional effector mechanisms upon 
antigen re-exposure[589]. In contrast, during the chronic stage, 
antigen-specific T cells become functionally impaired and even 
get physically deleted[590]. Persistence of antigen-specific T cells 
exhibiting impaired effector functions, poor recall response and 
suboptimal antigen-independent homeostatic proliferation is referred 
to as exhaustion. In various chronic viral models of infection such 
as lymphocytic choriomeningitis virus (LCMV), HBV, HCV, it has 
been demonstrated that CD8 T cells gradually lose their function, and 
finally become exhausted[588]. 
    Acute exposure to foreign antigen results in persistent antigen-
specific cellular immunity, but during chronic viral infection 
persistent antigen exposure may exhaust that response[591]. This 
exhausted CD8 T-cell phenotype may itself be defined by a distinct 
transcriptional signature, and signatures of CD4 T-cell help and CD8 
exhaustion predict clinical outcome in autoimmunity[591,592]. It must be 
noted that T cells maintain an exhausted phenotype also after antigen 
withdrawal and population reexpansion[593]. McKinney et al[591,592] 
showed that the same signature found in chronic viral infection can be 
seen in chronic self-antigen exposure during autoimmunity, with one 
exception: whereas exhaustion results in viral persistence it predicts 
favorable outcome in autoimmunity. These authors demonstrated that 
the CD8 exhaustion signature in autoimmunity is inversely correlated 
with that of concurrent CD4 help and can be robustly identified in 
mixed cell population[591,592]. 
    Multiple factors such as antigen load, duration of infection, CD 
help, regulatory T cells, and type of antigen presenting cell affect the 
intensity of CD8 T cell exhaustion[594,595]. The occurrence of T cell 
exhaustion in viral models has been associated with concomitant 
high viral load and persistent antigen levels, loss of CD4+ T-cell 
help, suppressive cytokines IL-10 and TGF-β, and DCs as well as 
Treg cells that are the major sources of the immunosuppressive 
cytokines IL-10 and TGF-β[589,596,597] (Table 23). In contrast, chronic 
parasite infections are characterized by lower pathogen burden 
usually restricted to tissues, suggesting alternative driving forces 
in the induction of T cell exhaustion, such as for example parasite 
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encystation and latency[596]. 
    A chronic infection is usually caused when the host is unable to 
fully clear the microbe (impaired cleaning service), and this may 
be a result of host immune dysfunction or immune evasion by the 
pathogen or both[588]. During T cell exhaustion, loss of function 
appears to occur in a hierarchical manner: CD8 T cells undergoing 
exhaustion first lose the capacity for IL-2 secretion followed by 
marked decreases in their potential for proliferative expansion and 
ability to exert cytotoxic function. In extreme cases, exhausted 
CD8 T cells lose the capacity to secrete TNF, followed by IFN-γ, 
and are ultimately deleted physically from the host[607-609]. These 
progressive declines in T cell activity and survival translate in to 

deficiencies in pathogen control by the host[608]. Thus, CD8 T-cell 
exhaustion is associated with impaired clearance of chronic pathogen 
infection, driven both by persistence of foreign antigen(s) and by 
the lack of accessory “help” signals, especially during concomitant 
infections[591,592,610] (Tables 24-27).
    T cell dysfunction that occurs during chronic viral infections is 
distinct from the state of T cell anergy (a condition of long-lasting, 
partial or total unresponsiveness contributing to peripheral T-cell 
tolerance)[611,612]. CD4+ and CD8+ anergic T cells induced by IL-10-
treated human DCs displayed antigen-specific suppressor activity 
caused mainly by the increased surface and intracellular expression 
of cytotoxic T-lymphocyte antigen-4 molecule[613]. IL-10 also directly 

Table 21. Downregulation of cell-mediated immune responses after infection with T. gondii (acc. to Lang et al [552]; with own modification).

Evasion strategy Consequence(s) Molecular mechanism(s) Parasite effect Refs

Induction of IL-10
Decreased TH1 response; Indirect [540,553]

Deactivation of macrophages Independent of PGE2 Indirect

Induction of TGF-β Reduced TNF-α production by macrophages; 
reduced IFN-γ production by NK cells Antagonizes IL-12 Indirect [545,547,554]

IFN-α/-β upregulation Reduced IFN-γ levels and splenocyte 
proliferation Indirect [555]

Inhibition of TNF-α 
and IL-12 production

Deactivation of macrophages; inhibition of 
TH1 responses

Reduced phosphorylation of p65/RelA; 
defective nuclear import of NF-κB; IL-
10-independent STAT3 phosphorylation

Direct [ 5 4 3 , 5 5 6 -
559]

Decreased IL-12 
production by DCsa Inhibition of TH1 responses LXA4-mediated downregulation of CCR5 Indirect [548,560]

Blockade of MHC 
class II upregulation

Defective antigen presentation to CD4+ T 
cells

Reduced activity of CIITA and IRF-1 
promoters Direct [561-563]

Inhibition of 
NO production Defective antiparasitic activity Inhibition of iNOS transcription Direct [564,565]

Inhibition of 
NO production in microglia Reduced antiparasitic activity Secretion of PGE2, IL-10 and TGF-β Indirect [566,567]

Inhibition of p47 GTPases Reduced transcription [568]
Significant suppression of   IL-2, 
IFN-γ (but not IL-10). Markedly 
lower levels of IgG1, IgG2a, 
IgG2b, IgG3, IgA, IgM

Suppressed cytokine and immunoglobulin 
secretions by murine splenic lymphocytes Indirect [569]

 CIITA, master regulator of major histocompatibility complex class II transcription; CCR5, CC chemokine receptor; DCs, dendritic cells; 
iNOS, inducible nitric oxide synthase; IRF-1, interferon regulatory factor-1; LXA4, lipoxin A4; MHC, major histocompatibility complex 
molecules; PGE2, prostaglandin E2; TGF-β, transforming growth factor-β. aT. gondii preferentially invades immature CD8α- DCs, 
failing to activate them in the process, and rendering them insensitive to subsequent activation by TRL ligands or CD40L signal [557].
Proliferation of T . gondii in inflammatory macrophages was associated with diminished ROS production in host  cells [570]. In young 
children with congenital toxoplasmosis specific T cell response to the parasite antigens was impaired and such hyporesponsiveness has 
been restored during childhood. The acquisition of functional T cell response was disease-unrelated and indistinguishable in terms of 
strength, epitope specificity, and cytokine profile from the corresponding responses in immunocompetent adults with asymptomatic 
acquired T. gondii infection [571]. In pregnant mice, T. gondii infection caused a decrease of CD4+CD25+-regulatory T cells [572].

Table 22 Suppression of immune responses to T. gondii by parasite-triggered modulation of host cell apoptosis (acc. to Lang et al [552]; with own  
modification).
Evasion strategy Consequence(s) Molecular mechanism(s) Parasite effect Refs

Apoptosis of CD4+ cells T-cell unresponsiveness Cell death by neglect Indirect [549]

Apoptosis of leukocytesa Unrestricted parasite replication and host death Upregulation of Fas and FasL; TNF-
dependent mechanisms Indirect [550,573,574]

Inhibition of apoptosis in 
parasite-positive cells

Blockade of host cell suicide; avoidance of CTL- 
and NK-mediated cytotoxicity

Inhibition of cytochrome c-release; 
upregulation of antiapoptotic molecules

Direct
[575-579 ]

Interference with caspase activation; 
degradation of PARP (?) [580]

CTL, cytotoxic T lymphocyte; Fas, receptor; FasL, Fas ligand (a cell surface molecule belonging to TNF family and death factor, which binds to its receptor 
Fas, thus inducing apoptosis of Fas-bearing cells); NK, natural killer cells; PARP, poly(ADP-ribose) polymerase. aT. gondii delayed neutrophil apoptosis 
by inducing granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor secretion by the parasite-infected human 
fibroblasts. Although neutrophils are unable to kill T. gondii, this can retard their division time from the usual 6-8 hrs cycle to a 24 hrs cycle and this 
enhanced neutrophil survival may contribute to the robust proinflammatory response elicited in the pathogen-infected host cells [581]. Interference in the 
normal process of apoptosis may cause some health disturbances such as ADs, neurodegenerative disorders, and cancers [582-586]. Besides the harmful 
effects, activation-induced cell death may serve as a mechanism for elimination of activated T cells, reducing damage to hosts [582].
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Table 23 Immune clearance and tolerance changes and clinical manifestations of chronic HBV-infected patients (acc. to Ye et al [597]; with own 
modification).

Status Immunological 
characteristics Immunological effects Clinical manifestations Refs

Immune 
clearance

IL-12↑↑, IL-18↑↑, IFN-γ↑, 
IFN-α↑, IL-10↓

Inflammatory response, cell infiltration (T cell, 
NK, NKT cell and monocytes), complete or 
partial virus deletion

Active hepatitis B, liver damage, 
elevated ALT level [598-604]

Immune 
tolerance

IL-10↑, TGF-β↑,  PD-1↑, 
CTLA-4↑, Treg↑

Exhaustion, apoptosis, persistent HBV 
replication

Low-grade inflammation, normal 
or low level of ALT

[598,599,604-
606]

HBV, hepatitis B virus; ALT, alanine aminotransferase; PD-1, programmed cell death-1; CTLA-4, cytotoxic T-lymphocytes-associated antigen-4; Tregs, 
T-regulatory cells; NK, natural killer cells. 

Table 24 Differences between T cell anergy and T cell exhaustion (acc. to Rodrigues et al [596]; with own modification).

Unresponsive 
state

Differentiation 
state affected Driving forces General characteristics of the unresponsive state

T cell anergy Naïve/Effector

Impaired antigen presentation Impaired activation and proliferation

Reduced costimulation Defective differentiation and functions
Expression of immunomodulatory molecules 
(IDO, CD73, CD39) Apoptosis

Regulatory cytokines (IL-10, TGF-β)

T cell exhaustion Effector

Antigen persistence, chronic activation Progressive impairment of effector function

Regulatory cytokines (IL-10, TGF-β) Exhausted T cells present high and sustained expression of inhibitory 
molecules such as PD-1, TIM-3, and LAG-3

Suboptimal priming (while in the naïve state) Decreased expression of common γ chain cytokine receptor

Apoptosis
IDO, indoleamine 2,3-dioxygenase; LAG-3, lymphocyte-activated gene-3; PD-1, programmed death-1; TIM-3, T-cell immunoglobulin, and mucin domain-
containing protein-3. 

inhibits CD8+ T cell function by enhancing N-glycan branching to 
decrease antigen sensitivity[614]. One essential difference between 
anergy and exhaustion is the differing mechanisms of induction of 
these types of T cell dysfunction. Anergy is induced when T cells do 
not receive all the necessary signals for T cell activation, while T cell 
exhaustion during chronic viral infection is associated with initially 
normal effector differentiation followed by a progressive loss of 
function over time[584,592,593] (Table 24).
    CD8 T cells can adapt a spectrum of exhausted states, and the 
levels of viral antigen and availability of CD4 T cells are key 
determinants of the extent of CD8 T cell exhaustion. CD4 T cells 
also succumb to exhaustion, which may lead to further deterioration 
of the antiviral CD8 T cells response[587,615]. The most severely 
exhausted CD8 T cells develop under conditions of high viral 
loads and ineffective CD4 T cell help[616]. CD8 T cell exhaustion 
is characterized by the gradual loss of effector capabilities, the 
sustained upregulation of inhibitory receptors (e.g. PD-1), and 
the loss of self-renewal abilities, which compromise viral control. 
Severely exhausted T cells may undergo apoptosis and become 
deleted from the chronically infected host[587,615] (Tables 24-26). T 

cells dysfunction can be reversed at early stages of exhaustion, but 
it becomes more permanent as exhaustion progresses and the cells 
become more terminally differentiated[587,595].
    T cell exhaustion associated with chronic infection was initially 
reported in viral models as specific CD8 T cells that failed to produce 
cytokines[613], and a similar pattern has been reported for chronic 
parasitic infections, including T. gondii[588,594,596,617]. Toxoplasma is a 
strong inducer of antigen-specific CD4+ and CD8+ T lymphocytes, 
indicating that pathogen peptides are efficiently targeted to the 
appropriate cellular pathways of antigen presentation during 
infection[239]. Both CD4 and CD8 T cells have been reported to act 
synergistically to supervise T. gondii infection[618], but CD8 T cells 
are considered pivotal for control of chronic toxoplasmosis[619]. The 
synergistic effect of CD4 T cells is mainly restricted to their helper 
role in the maintenance of a long-lived CD8 T cell response[620]. 
However, systemic T. gondii infection triggers a rapid and persistent 
decrease in the size and function of naïve CD4+ T lymphocytes, and 
causes a long-term thymic atrophy and output due to destruction 
of the thymic epithelium[621]. Khan et al[549] demonstrated that 
activation-induced CD4+ T cell transient unresponsiveness occur 
during acute T. gondii infection in mice, and may be important in 
immune downregulation and parasite persistence in the infected 
host. This immunosuppression can be induced through stimulation 
and production of IL-10, TGF-β, and the RNI[622,623]. IL-10 
inhibits parasite killing and NO production by IFN-γ-activated 
macrophages[622]. Immunosuppressive activity due to RNI generation 
was observed particularly during the early phase of infection with 
the pathogen[623]. Associated with suppression of immune response 
was also a decrease in the production of IL-2[624] and IFN-γ[625]. In 
addition, acute T. gondii infection induced CD4+ T cell apoptosis 
(CD4+ T cells exhibited DNA fragmentation pattern) as a long-
term consequence to T cells rendered anergic[549]. Manipulation 
of the mechanisms regulating apoptosis[626], as well as the balance 
between generation of pro- and antiinflammatory cytokines[627,628] 
may have direct/indirect effects on the APCs involved in processing 

Table 25 Progressive exhaustion of CD8 T cell effector response 
capabilities associated with increasing viral load level and time in 
chronically infected host (acc. to Kahan et al [615]; with own modification).

CD8 T cell 
effector

Functional Partial exhaustion Severe exhaustion
CD4 help 
decreasing → Viral load increasing →

IL-2 ++ - - - -

TNF-α +++ +/-

IFN-γ +++ ++ + - -

Cytotoxicity +++ +
Inhibitory 
receptors + + ++ +++ +++

Proliferative 
potential +++ ++ + - -

Apoptosis - +/- +/- ++ ++++
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Table 26 T cell functionality during acute versus chronic viral infections with some examples of CD8 virus-specific T cells (acc. to Virgin et al [587]; with 
own modification).

Acute infection Highly polyfunctional memory T cells characteristics

Antigen cleared. Low inflammation
IFN-γ TNF CTL IL-2 Proliferative 

potential Apoptosis

+++ +++ +++ + +++ -

Chronic infection. Antigen persists, inflammation persists Hierarchical loss of T cell function during chronic infections

CMV +++ ++ ++/- +/- ++ -

EBV ++ + + - + -

HIV, HCV, HBV +/- +/- +/- - +/- +/-

Chronic LCMV +/- - - - - ++

Apoptotic T cell ++++
CMV, cytomegalovirus; EBV, Ebstein-Barr virus; HIV, human insufficiency virus; HCV, hepatitis C virus; HBV, hepatitis B virus; LCMV, lymphocyte 
choriomeningitis virus. 

Table 27 Toxoplasma-specific CD8+ lymphocytes in the course of acute 
and chronic infection (acc. to Dlugonska & Grzybowski [636]; with own 
modification).
Characteristics Acute/early 

chronic infection
Late chronic 
infection

CD8+ lymphocytes Functional 
(naïve → activated)

Exhausted

Polyfunctionality degreea High Low

T. gondii antigen load High → low High

Recall T. gondii antigen reaction High Low

Inhibitory receptors (e.g. PD-1) Low High
Transcription factors 
(T-bet, Eomes)

Low High

Apoptosis Low High

PD-1, Programmed death protein-1. T-bet and Eomes are the key 
transcription factors regulating NK cell maturation and function, and 
act as important drivers of other immune cell development and cytolytic 
function. a Polyfunctionality, one of the hallmarks of robust CD8 response, 
is the capacity of a single T cell to display multiple functions. CD8+ 

lymphocytes simultaneously display cytotoxicity (granzym B) and 
enhanced generation of proinflammatory cytokines (IFN-γ, TNF-α).

and presentation of antigens from apoptotic cells, and in switching 
the immune system on or off[629]. Several reports confirmed that T. 
gondii infection inhibits the maturation of professional APCs[563,630], 
but recently Dupont et al[631] suggested that, on the contrary, infection 
induces DC maturation, probably depending on other accessory cells 
present in the experiments.
    Chronic parasite persistence also has a strong impact on the 
effector function of specific T cells, inducing their step-wise loss 
of cytotoxic and/or helper activities[589]. Exhausted T cells present 
high and sustained expression of inhibitory molecules such as PD-
1, TIM-3, LAG-3, and T cell immunoglobulin[589]. It must be noted 
that PD-1 inhibitiory receptor regulates bioenergetic insufficiencies 
early and late during infection, and early exhausted T cells exhibit 
suppressed glycolysis, oxidative phosphorylation, and mitochondrial 
metabolism[632]. 
    CD4+ T-cell function is critical to sustain CD8+ cytotoxic T-cell 
response during chronic viral infections (several months or longer 
to clear the infection)[633]. During chronic toxoplasmosis, CD4 
dysfunction is more pronounced than CD8 T cells[619]. It should be 
noted that both T. gondii-positive men and women have markedly 
reduced lymphocyte B-cell counts[634], and since B cells are regulating 
optimal CD4+ T cell activation[635], this abnormality may also at least 
in part contribute to the development of T cell exhaustion. Moreover, 
apoptosis of CD4+ T cells caused during acute T. gondii infection 
in mice[550] may likewise participate in the exhaustion process. CD4 
T cell exhaustion causes CD8 T cell dysfunction during chronic 
toxoplasmosis[619], and there is strong evidence that CD8 T cell 

exhaustion plays an important role in the reactivation of chronic 
toxoplasmosis[594,595]. During this stage of the disease, CD8 T cells 
exhibit progressive functional exhaustion, poor recall response, and 
elevated apoptosis[594,636]. Exhausted CD8 T cells are ineffective at 
clearing pathogens, and this therefore leads to establishment of a 
persistent chronic infection[637] (Table 27). 
    Two models – T. gondii and LCMV infections and their CD4 and 
CD8 T cell exhaustion inhibitory receptor profiles, as well as potential 
treatments are presented in Table 28[588]. It must be noted that LCMV 
infection clinically mimics both congenital toxoplasmosis and CMV 
infection[638].
    In summary, T. gondii chronic infection-induced cytotoxic T 
lymphocyte exhaustion leads to development of ADs because 
of decreased polyfunctionality, cytotoxic capability, cytokine 
production, proliferative capacity, and metabolic deficiency. The 
process of T-cell exhaustion inhibits the immune response, thus 
facilitating pathogen persistence. CD8 T-cell exhaustion is associated 
with impaired clearance of chronic pathogen infection, driven both 
by persistence of foreign antigen(s) and by the lack of accessory 
“help” signals, especially during concomitant infections. In chronic 
toxoplasmosis, CD4 T cell dysfunction is more pronounced than CD8 
T cells. Functional exhaustion of CD8+ T cells may cause reactivation 
of latent disease during later phases of chronic toxoplasmosis. In 
autoimmune processes where evidence of CD4 T-cell costimulation 
was pronounced, that of CD8 T-cell exhaustion was reduced, 
therefore induction of exhaustion may also reflect a host defense 
reaction. Chronic parasite infections characterized by lower pathogen 
burden usually restricted to tissues, suggest alternative driving forces 
in the induction of T cell exhaustion, such as parasite encystations. 
Both T. gondii- and viral-associated inflammatory processes may 
be mutually overlapping which lead to worsening or improving 
clinical course of ADs depending on the final temporary or stable 
proinflammatory/antiinflammatory cytokine constellations. 

DOWNREGULATION OF B AND NK CELLS, 
NEUTROPHILS AND MACROPHAGES DE-
FENSE RESPONSES DURING T. GONDII IN-
FECTION
A significantly lower occurrence of antibodies to persistent viral 
as well as T. gondii infections reported in patients with some ADs 
compared with controls may be due to suppressed (exhausted) 
function of host B cells 
B cells. These cells contribute to disease pathogenesis in 
autoimmunity and also play an immunomodulatory role in regulating 
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the immune response by secreting cytokines that inhibit disease onset 
and/or progression[640,641]. It was found that pathogenicity of T. gondii 
increases through B2 cell-mediated downregulation of host defense 
responses[642], and Flegr & Striz[634] demonstrated that lymphocyte 
B-cell counts were significantly reduced in both males and females 
with toxoplasmosis as compared with controls.
    B cells (also known as B2 cells) play a significant role in 
development of several ADs, including RA, SLE, vasculitis, 
myositis, MS, Sjögren syndrome, blistering skin disease, and chronic 
lymphocytic leukemia[643,644]. These cells positively regulate immune 
responses through antibody production and CD4+ T cell activation[645]. 
B1 cells (a subclass of B cell lymphocytes) can generate regulatory B 
cells (B10 cells) that affect immune responses through the production 
of antiinflammatory cytokine IL-10 important in the pathophysiology 
of many ADs[645]. Regulatory B cells act as inhibitors of immune 
responses and inflammation. B cells and B10 cells balance immune 
responses during inflammation and autoimmunity[646]. 
    B cells can function as antibody-producing cells and they can also 
modulate immune responses through critical secretion of cytokines 
and chemokines, as well as antigen presentation[647-650]. B1 and 
marginal zone (MZ) B cells (innate-like B cells) are activated during 
T. gondii infection because they generated short-lived plasma cells 
providing a prompt antibody source, and also induce massive B cell 
response that leads to hypergammaglobulinemia with production of 
serum specific for the parasite and self and/or not related antigens[650]. 
    B cell exert suppressive functions in infectious diseases[651] because 
neutralizing antibody production by B cells and cytotoxic activity of 
CD8+ T cells are well accepted components of the adaptive immune 
response of the host to viral infection[652]. Chen et al[653] demonstrated 
that B1 cells play an important role in host protection against T. 
gondii infection since high expression of both TH1- and TH2-type 
cytokines and a high level of NO production in T. gondii-infected 
B cell-deficient mice transferred with primed B1 cells. However, 
B cell-deficient mice have a decreased resistance to infection with 
the parasite despite unimpaired expression of IFN-γ, TNF-α, and 
iNOS[654]. Moreover, B1 cells would also be implicated in the 
pathogenesis of toxoplasmosis through the production of antibodies 
against the HSP70 of T. gondii and IL-10[655] thus regulating 
susceptibility to T. gondii infection[656]. Because B cells can directly 
modulate also DC and T-cell subsets that affect adaptive immunity 
and the progression of infection[657], they may play both a protective 
and a pathological role in the host.
    The parasites have evolved unique ways to evade B cell immune 
responses inducing apoptosis of conventional mature B cells and 
MZ B cells[650]. Moreover, it was suggested that during many chronic 
infectious diseases, such as for instance HIV-AIDS, tuberculosis and 
malaria, immune activation and inflammation drive a large expansion 
of exhausted B cells (atypical memory B cells or tissue-like memory 
B cells) that contribute to deficiencies in the acquisition of humoral 
immunity[

658]. Strickland & Sayles[659] found that T. gondii infected 
mice immunized with sheep red blood cells had a depression not only 
in the primary, but also in the secondary humoral immune response, 
since they showed less IgM and IgG splenic antibody-secreting cells 
than non-infected control animals. This indicate that the parasite 
not only affected development of the cells involved in antibody 
production but also disturbed an already established humoral 
response against other pathogens through memory B cells[650,659]. This 
reasoning may be supported by the significantly lower occurrence 
of antibodies against T. gondii and some other pathogens in the sera 
of diabetic patients compared with their family members or healthy 
controls, probably due to their impaired innate immune B cell 

Table 28 T. gondii and LCMV infections, and T cell exhaustion 
characteristics (acc. to Gigley et al [588]; with own modification).

Pathogen CD4 
exhaustion

CD8 
exhaustion

Inhibitory 
receptors a Treatment b

T. gondii + + PD-1 (i) αPD-L1

LCMV 
chronic 
clone 13

+ +
PD-1, LAG-3, 
CD160, 
2B4, Tim3

(i) αPD-L1

(ii) αPD-L1 + αLAG-3

(iii) αPD-L1 + Tim3-Ig
aInhibitory receptor profile of T cells in the parasite and two different 
models of exhaustion. bStrategies to rescue T cell exhaustion by blocking 
inhibitory receptor interaction with it ligand via use of blocking antibodies 
(αPD-L1, αLAG3) or fusion proteins (Tim3-Ig). Interestingly, PD-1 
deficient signaling as a result of PD-1 gene polymorphisms in humans has 
been associated with development of various ADs [639]. 2B4, a non-MHC 
binding receptor with multiple functions expressed on NK and CD8+ T 
cells in mice and humans; CD160 is a membrane protein found on normal 
NK and T cells, which improve proliferation and cytotoxic activity in CD8 
T cells. LAG-3, lymphocyte-activation gene-3; PD-L1, programmed death 
ligand 1; Tim3-Ig, T cell immunoglobulin and mucin domain 3.

capacity associated with persistent infections with these microbes 
(Table 29)[104]. These findings are also in line with the markedly lower 
levels of immunoglobulins IgG1, IgG2a, IgG2b, IgG3, IgA, and 
IgM secreted by murine splenic lymphocytes infected in vitro with T. 
gondii tachyzoites[572]. Moreover, low maternal anti-Toxoplasma IgG 
antibody was associated with increased offspring odds of autism[660], 
and several parental ADs were correlated with ASD in offspring[661]. 
    Recently, Alvarado-Esquivel et al[662] reported a similar example 
of a lower frequency of anti-T. gondii IgG antibodies in female 
patients with various neurological diseases (8 of 213; 3.8%) as 
compared with female controls (23 of 213; 10.8%) (OR = 0.32; 95% 
CI: 0.14–0.73; p = 0.005).. The authors tried to explain this fact as 
a protective effect of the pathogen infection against neurological 
disturbances, or that T. gondii infection did not play an important 
role in neurological entities in the investigated population. It seems 
however that this finding may reflect impaired (exhausted) B cell 
functions due to persistent infection of the female patients with the 
parasite[651]. Similar markedly lower seroprevalence rates of T. gondii 
infection compared to controls have been reported in patients with 
MS[415,663,664]. Moreover, it was suggested that the parasite play a 
protective role in this clinical entity because patients infected with 
the microbe had experienced fewer relapses with lower disability 
scores[415]. This is not surprising because T. gondii infection is known 
to affect both proinflammatory and antiinflammatory processes in 
the host[535], and markedly increased generation of antiinflammatory 
cytokines IL-10 and TGF-β, and a decrease in IL-12 and IFN-γ-
secreting cells, together with induction of Tregs, can favorably 
alter the clinical course of MS[665,666]. Infection with the parasite is 
associated with similar changes in the serum cytokines, IgE and 
Tregs responses[300,553,554,667-669] as these caused by gastrointestinal 
helminths in patients with MS[665]. Furthermore, several authors found 
a protective effect of cat exposure during childhood on MS risk[670,671], 
and otherwise it is known that T. gondii serotyping in cats revealed 
predominance of type II infections (most frequent in humans)[672], and 
studies performed in different countries indicate high prevalence of 
the parasite, other protozoa and helminths in cat feces[673]. 
    It was demonstrated that vitamin D deficiency is associated with 
increased autoimmunity as well as an increased susceptibility to 
infection[674], especially that it exerts modulatory effects on B cell 
differentiation[675]. Hypovitaminosis D may affect B cell function in 
ADs because B cells upregulate the vitamin D receptor on several 
immune cells upon activation, and due to regulated expression of 
the metabolizing enzymes CYP27B1 and CYP24A1, B cells control 
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the local availability of active vitamin D[676]. These findings are 
clinically relevant and in one study it was found that women with 
T. gondii infection had vitamin D deficiency as compared with 
controls[677] and otherwise it is known that estrogen dysregulated 
T- and B-cell balance by inducing selective T-cell hypoactivity and 
B-cell hyperactivity, thus increasing risk of ADs[678,679]. Moreover, 
vitamin D dose-dependently inhibited intracellular growth of the 
parasite[680,681].
    NK cells. These cells interact with various components of the 
immune system and therefore have the potential to function as 
regulatory cells. NK cells can assist in DC maturation and T-cell 
polarization, and also prevent or limit autoimmune responses[682]. 
There is a rapid transfer of T. gondii tachyzoites from infected DC 
to effector NK cells during infection[243]. NK cells can boost immune 
defense via their cytolytic activity and capacity to produce IFN-γ. 
The cells can however also dampen immune responses to pathogens 
via secretion of the antiinflammatory cytokine IL-10[683], and can 
promote T cell exhaustion during chronic infections[615]. NK cells can 
target and kill activated CD4 T cells during the early stages of viral 
infections, removing vital helper functions, thereby fostering the 
development of CD8 T cell exhaustion. NK cells may also directly 
target antiviral CD8 T cells, reducing their availability to control the 
infection and thus also promoting exhaustion[684,685]. The targeted 
depletion of NK cells can save the antiviral T cell responses and 
permit viral clearance[686]. It is important to note that following T. 
gondii infection of the NK cells there was reduced IFN-γ generation, 
increased TGF-β production by these cells, and downmodulation of 
their effector functions, i.e. impaired target recognition and cytokine 
release, two mechanisms that independently could enhance survival 
of the pathogen[687]. On the other hand, parasitized NK cells did not 
facilitate the spread of the parasite to the brain[688]. Besides of T cells, 
other cells such as NK cells and neutrophils might also be the source 
of IL-17, and an exaggerated TH17 response may lead to severe 
inflammatory responses and development of ADs[689-691].
    Neutrophils. These cells control infectious pathogens by 
phagocytosing and degrading microbes, releasing immunoregulatory 
cytokines (IL-12, TNF-α, IFN-γ) and chemokines during infection, 
and producing ROS[692-694]. Neutrophils play an important role during 
early T. gondii infection[695-697]. Lima et al[692] revealed evasion of 
human neutrophil-mediated host defense during T. gondii infection 
because the parasite inhibited a proinflammatory cytokine IL-
1β production in these cells by inhibiting the activation of NF-κB 
signaling pathway and by impairing function of the inflammasome, 
the multiprotein complex responsible for IL-1β maturation[692].
    Recently, IL-17 has been identified regulating neutrophil-mediated 
inflammation, and suppression of this cytokine may contribute to 
virus-induced immunosuppression as well as to the pathogenesis 
of many acute and chronic inflammatory disorders[698]. Kelly et 
al[699] demonstrated that early neutrophil induction during T. gondii 
infection is dependent on IL-17-mediated signaling. A diminished 
response in IL-17R knockout animals was associated with a defect in 
the migration of polymorphonuclear leukocytes to infected sites and 
an impaired generation of the macrophage inflammatory protein-2 
early during infection. 
    Macrophages. Recently, Dupont et al[631] found that T. gondii 
infected disproportionately macrophages and DCs, and it appeared 
that phagocytosis of parasites was not sufficient to induce immune 
responses of these cells. Macrophages play an important role in tissue 
homeostasis, presentation of foreign and self-antigens following 
infection, pathogen clearance, resolution of inflammation and 
tissue healing[700-703]. Macrophages are crucial for the host response 

to infection with various pathogens because enhanced generation 
of ROS and RNIs endow these cells with potent antimicrobial 
activity[704]. These cells are also professional APCs as they efficiently 
process and present peptide antigens for MHC class I- and class II-
restricted presentation on the cell surface. Microbial peptide-bearing 
macrophages activate antigen-specific CD4+ and CD8+ T cells and 
therefore are an important component in the bridge connecting 
innate and adaptive immunity[704,705]. Following antigen stimulation 
immature monocytes emigrate from blood vessels into peripheral 
tissues where they differentiate into mature macrophages and DCs 
comprising as much as 15% of total cells[702]. 
    T. gondii rhoptry proteins utilize multiple mechanisms of host 
manipulation to establish chronic infection of the host[706]. Several of 
these proteins including ROP16 and ROP18 kinases secreted into the 
host cell cytosol directly phosphorylate host cell proteins and thereby 
subvert host cytokine signaling pathways in macrophages[707-710]. 
Jensen et al[709] showed that clonal lineages of the parasite have 
evolved distinct ways of subverting host macrophages. T. gondii strain 
type II (most frequent) infected macrophages are classically activated 
(M1), while type I and III infected macrophages are alternatively 
activated (M2)[709]. Furthermore, macrophages are considered M1 
when stimulated by IFN-γ or LPS to release NO, important for 
killing T. gondii, and M2 when stimulated by IL-4 or IL-13 (M2a) 
to produce IL-10, TGF-β and arginase-1[711,712]. TGF-β suppressed 
IFN-γ-induced toxoplasmastatic activity in murine macrophages by 
inhibition of TNF-α generation[547]. Moreover, T. gondii facilitated 
parasite replication in activated murine macrophages through 
reduced expression of the iNOS[552, 565]. Parasites that require TH2 
immune response for effective clearance are strong inducers of 
M2 macrophages, however, bacteria and viruses that require TH1-
type responses may induce M2 as a strategy to evade the immune 
system[700]. M2 may exacerbate autoimmune disease by presenting 
self-tissue to T cells, and cause the release of profibrotic factors 

Table 29 Percentages of T1DM patients, their first-degree family members 
(FM) and healthy controls with antibodies against T. gondii and some other 
infectious agents (acc. to Krause et al [104]; with own modification).
Infectious agent T1DM FM Controls P value

T. gondii 5.4 24.4 40 0.001

EBV-VCA (IgG anti-VCA) 82.1 92.6 92.8 0.04

EBV-EBNA (IgG anti-EBNA) 71.4 89.3 90.7 0.001

CMV 69.6 79.7 92.9 0.001

HP 55.1 78.3 80.7 0.01
CMV, cytomegalovirus; EBV, Ebstein-Barr virus; EBV-VCA, EBV viral 
capsid antigen; EBV-EBNA, EBV nuclear antigen; HP, Helicobacter pylori.

Table 30 The effect of NO (S-nitroso-glutathione, GSNO, 200 µM, 24 hrs) 
on the secretion of IL-6 and IL-8 in human saphenous vein endothelial 
cells (HSVEC) monolayers (acc. to De Caterina et al [723]; with own 
modification).

IL-6 IL-8

pg/105 cells Inhibition 
by GSNO pg/105 cells Inhibition by 

GSNO

Control, no IL-1α < 20 25.9 ± 3.0

Control + GSNO < 20 ND 25.8 ± 1.3 < 1%

IL-1α (10 ng/mL) 286.0 ± 19.8 970 ± 31.0

IL-1α + GSNO 142.0 ± 3.3 a 50% 723 ± 46.7 a 25%
Results are mean ± SE of protein concentration assayed in quadruplicate 
in medium from greater than 4 HSVEC monolayers in each control 
unstimulated condition and greater than 8 HSVEC monolayers for each 
stimulated condition. a p < 0.01 in comparison with corresponding control 
conditions. ND, not detected.
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including IL-1β, TGF-β, b-fibronectin and matrix metalloproteinases. 
Marshall et al[713] demonstrated that peroxiredoxin, a redox enzyme 
derived from T. gondii on murine macrophages, promoted altered 
macrophage function, and reduced IL-1β secretion and caspase-1 
activity, while simultaneously increasing IL-10 release. Moreover, 
the in vitro replication of the parasite (RH strain) was enhanced when 
macrophages were treated with peroxiredoxin. All these activities 
highlight an important role for M2 macrophages in modulating 
immunopathology in ADs and promoting parasite replication during 
T. gondii infection[713].

NITRIC OXIDE (NO) ACTS AS A PROAPOP-
TOTIC AS WELL AS AN ANTIAPOPTOTIC 
BIOMODULATOR, AND HAVE A VARIETY 
EFFECTS ON AUTOPHAGY
T. gondii infection causes dysfunction of both these processes and 
therefore hinders cleaning service of the apoptotic/autophagic 
cell-derived antigenic remnants, finally leading to triggering and 
development of several ADs
NO 
This potent biomediator has multiple functions in immunity and 
autoimmunity, being both friend and foe. Bogdan[715] reported 
that iNOS-derived NO is critical for defense against many 
microorganisms, including viral infections, intracellular bacteria and 
parasites. However, iNOS-mediated inflammatory tissue damage 
and/or disease has been demonstrated in many ADs, including 
inflammatory arthritis, experimental autoimmune encephalomyelitis, 
uveoretinitis, and immune complex glomerulonephritis[714-716]. 
In patients with RA and SLE several studies documented 
increased endogenous NO synthesis, and this mediator modulated 
mitochondrial events involved in apoptosis and regulated 
mitochondrial biogenesis in lymphocytes and other cell types. NO 
overproduction may perturb T cell activation, differentiation and 
effector responses, thus eventually contributing to the pathogenesis 
of autoimmunity[717]. 
    Mitochondria are a source of NO production[718]. Naturally 
produced NO circulates in plasma primarily as S-nitroso adduct 
of serum albumin[719], a reservoir with which plasma levels of free 
NO can be regulated for the maintenance of vascular tone[714]. 
Importantly, iNOS-derived NO can modulate the cytokine response 
of macrophages, T cells, endothelial cells, and fibroblasts[720,721]. It 
was demonstrated upregulation of iNOS expression when naïve 
NK cells were cultured in the presence of recombinant IL-2, 
and induction of iNOS enhanced NF-κB binding activity in IL-2 
activated NK cells[722]. Moreover, NO inhibited activation of NF-
κB[723]. NF-κB is a redox-sensitive transcription factor, and the 
intracellular redox status of the cell is extremely important in the 
regulation of NF-κB activity[724,725]. Activated NF-κB has been 
identified in SMC, macrophages, and endothelial cells of human 
atherosclerotic lesions[726,727]. It must be noted that the NF-κB family 
also play an important role in the regulation of genes associated with 
the development of innate and adaptive responses required for the 
recognition and immunologic control of pathogens[728,729].
    NO is a potent oxidant produced by both endothelial cells and 
macrophages that appear to exert both protective and atherogenic 
effects, depending on the source of production. NO produced 
by endothelial NOS has vasodilator function and is protentially 
atheroprotective. In contrast, NO produced via the much higher 
capacity iNOS in macrophages, serving antimicrobial functions 

based on its potent oxidative properties, is potentially atherogenic[730]. 
Moreover, iNOS was overexpressed in macrophage-derived 
foam cells so the cytotoxic amounts of NO were produced[731]. 
The mechanisms responsible for the atherogenic modification 
of low density lipoproteins may include: oxidation mediated by 
myeloperoxidase, 15-lipoxygenase, and/or NOS[730,732]. However, 
NO has also many antiatherogenic properties[723], including reduction 
of platelet aggregability[733], limitation of vascular smooth muscle 
cell proliferation[734,735], inhibition of leukocyte adhesion to the 
endothelium[736,737], and prevention of monocyte chemotaxis[738]. In 
addition, NO selectively decreased the endothelial expression of 
adhesion molecules E-selectin and intracellular adhesion molecule-1, 
and proinflammatory secretable cytokines IL-6 and IL-8 (Table 30)
[723]. 
    Several examples of the molecular immune-system functions for 
NO have been presented in Table 31[715]. 
    A large body of evidence indicates also that cell death (apoptosis/
autophagy) is a major modulating factor of atherogenesis[764,765]. 
Autophagy in atherosclerosis may have both protective and 
detrimental effects. Potential factors that stimulate autophagy in 
atherosclerosis included oxidized lipids, endoplasmic reticulum 
stress, inflammation, hypoxia and metabolic stress conditions[765]. 
Razani et al[766] found that atherosclerotic aortas had elevated levels 
of p62 (a protein that recognizes cellular waste), indicating that 
dysfunctional autophagy is characteristic of plaques. It was suggested 
that deficiency of autophagy was associated with proatherogenic 
inflammasome activation[766]. It must be also emphasized that 
impaired clearance of apoptotic cells promoted synergy between 
atherosclerosis and ADs[767], and that atherosclerotic process was 
found to be accelerated in several ADs, including autoimmune 
rheumatic diseases and SLE[768,769]. In this context, it must be 
noted that T. gondii infection probably play an essential role in the 
pathogenesis of atherosclerosis[525].
    Stimulation of autophagy by inflammation in atherosclerosis[765,770] 
acts as an immune defense pathomechanism of the host[771,772]. 
Cytokines take part in modulation of autophagy[771,772]. For example, 
proinflammatory cytokines TH1 type immune response, such as 
TNF-α took part in autophagic smooth muscle cells death[773], 
and IFN-γ in macrophages[774] and nonimmune cells[775], while 
TH2 cytokines such as IL-4 and IL-13 had the potential to act as 
suppressors of autophagy[771]. 

Autophagy and apoptosis 
These two basic physiopathologic processes contribute to 
maintenance of cellular homeostasis. The host immune system 
uses them to clear intracellular pathogens and as a mechanism 
to monitor its products for evidence of pathogen invasion and 
cellular transformation[776]. Beyond enhancing immunity through 
antigen loading onto MHC class II molecules, autophagy’s role is 
to assist the clonal expansion of B and T cells for efficient adaptive 
immune responses[776]. When autophagy occurs, part of the cellular 
constituents is sequestrated in double membrane-bound vesicles 
called autophagosomes and subsequently degraded upon fusion 
with lysosomes to provide essential elements for maintaining cell 
metabolism[776]. Autophagy target long-lived cytosolic proteins and 
damaged organelles, and involves double membrane formation, 
elongation, vesicle maturation and finally delivery of the targeted 
materials to the lysosome. Apoptotic cell death is characterized by 
cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic 
and chromatin condensation/fragmentation, nuclear pyknosis, and 
formation of membrane-enveloped apoptotic bodies, that are rapidly 
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Table 31 Selected functions of NO in the immune-system, cells involved, effects and molecular mechanisms [acc. to Bogdan [715]; with own modification).

Category Examples of cells 
producing NO NO effects Molecular mechanisms Refs

Antimicrobial activity

Macrophages, neutrophils, 
microglia, endothelial cells, 
epithelial cells, microglia, 
astroglia, eosinophils, 
fibroblasts

Killing or reduced replication of 
infectious agents (viruses, bacteria, 
protozoa, fungi, helminths)

Direct and/or indirect effects of NO on 
pathogens [739-741]

Antiinflammatory/
immunosuppressive 
effects

Macrophages “suppressor 
phenotype”

Inhibition of: 
-T and B cells proliferation; 
-antibody production by CD5+ B cells; 
-autoreactive T and B cell diversification; 
-inhibition of leukocyte recruitment, 
adhesion, extravasation, chemotaxis 

-Apoptosis of T cells or APCs; 
-downregulation of MHC class II, costimulatory 
molecules or cytokines; 
-disruption of signaling cascades and 
transcription factors; 
-inhibition of DNA synthesis; 
-downregulation of adhesion molecules or 
chemokines

[742-752]

Modulation of the 
production and 
function of cytokines, 
chemokines, and 
growth factors (pro- 
and antiinflammatory 
effects)

Macrophages, T cells, 
endothelial cells, fibroblasts

Up- and downregulation of: 
-IL-1, IL-6, IL-8, IL-10, IL-12, IL-18, TNF, 
IFN-γ ; 
-TGF-β, G-CSF, M-CSF, VEGF; 
-MIP-1α, MIP-2, MCP-1

Modulation of: 
-signaling cascades (e.g. G-proteins, Jak, MAP 
kinases, caspases, protein phosphatases); 
-transcription factors (e.g. NF-κB, AP-1, Sp1); 
-proteins regulating mRNA stability or 
mRNA translation; -latent cytokine precursor 
complexes; 
-enzymes that process cytokine precursors   

[743,753-
759]

T helper cell deviation e.g. macrophages

-Induction and differentiation of TH1 
cells; 
-suppression of TH1 (and TH2) cell 
responses; 
-suppression of tolerogenic T cell 
responses

1. Possible stimulation of IL-12-mediated 
signaling; 2. Suppression of IL-12 production

[744,749,760, 
761]

Tissue-damaging 
effects

Macrophages, microglia, 
astroglia, keratinocytes, 
mesanglial cells

Necrosis and/or fibrosis of the 
parenchyma

-Apoptosis of parenchymal cells; 
-degradation of extracellular matrix; 
-deposition of matrix, proliferation of 
mesenchymal cells; 
-influx of inflammatory cells via chemokine 
regulation

[744,762,764]

APCs, antigen presenting cells; AP-1, activator protein-1; G-CSF, granulocyte-colony stimulating factor; Jak, Janus kinases; MAP kinases, mitogen-activated 
protein kinases; MCP-1, monocyte chemoattractant protein-1; M-CSF, macrophage colony-stimulating factor; MHC class II, major histocompatibility 
complex class II; MIP-1α, macrophage inflammatory protein-1α; MIP-2, macrophage inflammatory protein-2; Sp1, stimulatory protein 1; TGF-β, 
transforming growth factor-β; VEGF, vascular endothelial growth factor.

phagocytosed by macrophages or neighbouring cells[777]. Apoptosis 
can be distinguished from necrotic cells death because apoptotic 
cells profoundly inhibit phlogistic macrophage responses and this 
represents a cell-associated, dominant-acting antiinflammatory 
signaling activity acquired posttranslationally during the process 
of physiological cell death[778,779]. Necrotic cell death, on the other 
hand, is associated with an early loss of membrane integrity resulting 
in rapid cell swelling, leakage of its contents and induction of 
an inflammatory response[779]. The effects of both early and late 
apoptotic cells on signaling were dominant over those of necrotic 
cells[780]. Therefore, clearance of apoptotic leukocytes is implicated in 
the resolution of inflammation, and defective clearance of apoptotic 
cells contributes to development of inflammatory and ADs[781-785]. It is 
well established that the accumulation of apoptotic debris exacerbate 
symptoms of inflammation and autoimmunity[786,787]. Uptake of early 
apoptotic debris can have an immunosuppressive effect on the host 
cell that is associated with the downregulation of TNF-α and the 
upregulation of IL-10[788,789]. Uptake of apoptotic cells by DCs (the 
most potent antigen-presenting cells) play a significant role in the 
immune responses, because DCs that have ingested apoptotic cells 
have a reduced capacity to stimulate T cells[790,791]. The ingestion 
of apoptotic cells by immature DCs can inhibit their maturation 
and antigen presentation with suppression of the secretion of the 
proinflammatory cytokine IL-12[790,791]. 
    Autophagy (Greek term meaning “self-eating”). This catabolic 
process in eukaryotic cells acting as a cellular housekeeper[792], 

is characterized by the formation of double-membrane vesicles 
0.5-1.5 mm in diameter in the cytoplasm of cells termed 
autophagosome[793,794]. Mature autophagosomes encase both cytosol 
as well as organelles, consistent with the early characterization 
of autophagy as a major pathway for protein degradation during 
period of starvation[795]. Autophagy contributes to the clearance 
of intracellular pathogens[794,796-798], as well as the MHCII cross-
presentation of endogenous antigens[799]. In T lymphocytes, 
autophagosomes form in human and murine T cells and can be 
induced in T-cell receptor-stimulated proliferating cells in vitro[800,801]. 
    NO have a variety effects on autophagy depending upon the cell 
type. For example, in glioma cells when combined with hypothermia, 
NO donors (e.g. sodium nitroprusside, S-nitrosoglutathione) inhibited 
the completion of autophagy[802,803], whereas in primary neurons, NO 
caused an increase in mitophagy (i.e. the selective degradation of 
mitochondria by autophagy)[804]. Overexpression of NOS impaired 
autophagosome synthesis, therefore in these systems, NO appeared 
to play an inhibitory role in autophagy[805], especially that L-NAME 
(NG-nitro-L-arginine methyl ester), a nitric oxide inhibitor, prevented 
NO inhibition of autophagy[805]. 
    Autophagy is an important player in immune functions involved in 
triggering and exacerbating autoimmunity[806,807], and its suppression 
has been implicated in a broad spectrum of human ADs, including 
rheumatic diseases[808], neurodegenerative disorders[809], inflammatory 
bowel disease[810], vascular disorders, and atherosclerosis[811]. 
Peripheral inflammation take part in cell proteolysis, and autophagy 
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fights disease through cellular self-digestion[812]. Autophagy has 
an antiinflammatory function as demonstrated in a mouse model 
of Leśniowski-Crohn’s disease[813], and thus may also exert a 
protective role against the development of several neurodegenerative 
diseases[814,815]. Pua et al[794] demonstrated that autophagy may have 
a significant role in the clearance of mitochondria in T lymphocytes. 
Autophagy-deficient T cells had increased ROS production as well 
as an imbalance in pro- and antiapoptotic protein expression[794], and 
ROS regulate activation-induced T cell apoptosis[816].
     Apoptosis (Greek term meaning “the falling off of the 
leaves”). This programmed cell death serves as a defense mechanism 
against viruses, bacteria and parasites[809], and is the most efficient 
system to get rid of unwanted apoptotic cells (ACs) being a source 
of haptenated antigens, without causing inflammation[629,818]. 
Macrophages are considered the most efficient scavenger of these 
cells[818,819]. Internalization and/or binding of ACs has been shown to 
downregulate the responses of macrophages[820,821], monocytes[788,789], 
and DCs[791] to microbial stimuli[822]. Uptake of ACs by phagocytes 
is thought to suppress autoimmune responses through the release of 
antiinflammatory cytokines IL-10, TGF-β, platelet activating factor, 
and prostaglanding E2 (PGE2), and inhibition of proinflammatory 
cytokines IL-1β, TNF-α, IL-12, IL-18, and GM-CSF[820,823]. 
Monocytes/macrophages after phagocytosis of monocytes commited 
to apoptosis by for example viral infection, do not elicit a specific 
cytolytic T lymphocyte (CTL) response[824]. On the other hand, DCs 
pulsed with apoptotic monocytes activated in vitro virus-specific 
CTLs[824]. Therefore, depending on the scavengers involved in the 
clearance of ACs, the result in terms of specific immune responses 
may be quite different[629]. 
    Apoptosis plays a critical role in inhibiting the proliferation 
of invasive organisms thereby protecting uninfected cells and 
limiting damage to the host organism. This process is characterized 
by early condensation of nuclear chromatin, enzymatic cleavage 
of the DNA into oligonucleosomal fragments, loss of plasma 
membrane phospholipids asymmetry, and segmentation of the cells 
into membrane-bound “apoptotic bodies”[825,826]. Cells dying by 
apoptosis can be phagocytosed by macrophages without damaging 
nearby cells, in contrast to necrotic cells releasing proinflammatory 
molecules, such as HSP70[827], uric acid[828], and lysosomal and other 
enzymes causing inflammation of the surrounding cells[825,829]. Nb. it 
should be noted that uric acid acts as an antioxidant molecule[830], a 
putative scavenger of peroxynitrite, which ameliorated the severity 
of EAE[831]. Moreover, uric acid produced in high quantities upon 
cellular injury is sufficient to induce T helper type 2 cell immune 
responses[830,832], and therefore hyperuricemia and hyperuricosuria 
observed in autistic children[833,834], may reflect a defense reaction 
of these patients against T. gondii infection probably responsible 
for development of this clinical entity[114]. Interestingly, aluminum 
hydroxide adjuvant boosts adaptive immunity by inducing uric acid 
generation and activating inflammatory DCs[835], and it was suggested 
that autism may be caused by aluminum-containing vaccines widely 
used in children[836].
    There are two primary pathways of apoptosis that broadly respond 
to extrinsic (death receptor activation) and intrinsic (DNA damage) 
triggers[837]. The signaling pathway involve the activation of cysteine 
proteases (caspases) that play a crucial role in the regulation and 
execution of apoptotic cell death. The first pathway of caspase 
activation involves death receptors such as Fas or TNF receptors, 
which lead to activation of caspase-8 and subsequently can activate 
downstream caspase-3, -6, or -7[838,839]. In the second pathway, various 
proapototic signals provoke the release of apoptogenic proteins, 

cytochrome c, and apoptosis-inducing factor from mitochondria into 
the cytoplasm[840,841]. 
    Apoptotic cells are removed by macrophages, without causing 
inflammation[819]. This was regarded as an active process mediated 
the production of IL-10, TGF-β, and PGE2, because macrophages 
cocultured with early apoptotic cells generated these antiinflammatory 
mediators that suppressed the production of proinflammatory 
cytokines in vitro[788,820,842]. In contrast, Kurosaka et al[843] earlier 
showed that macrophages cocultured with very early apoptotic cells 
produced neither proinflammatory nor antiinflammatory cytokines, 
but generated a large quantity of NO to suppress an inflammatory 
response. Further study of this group[819] provided evidence for the 
involvement of NO that counteract proinflammatory cytokines, such 
as macrophage inflammatory protein-2 and keratinocyte-derived 
chemokine, in a salient cleanup of apoptotic cells[843]. It was suggested 
that these findings may support the idea that antiinflammatory signals 
including NO also participate in the process of apoptotic cell clearance 
to counteract the generation of proinflammatory cytokines[819]. 
Inhibition of neutrophil migration by a mechanism dependent on 
ICAM-1 and modulation of leukocyte adhesion, both induced by NO, 
may be at least in part responsible for this NO activity[736,844].
    It must be noted that low or physiological plasma NO 
concentrations prevented cells from apoptosis that was induced by 
LPS, TNFα/ActD, and Fas (death receptor)[845]. Yuyama et al[846] 
demonstrated that cytotoxicity of low physiological (10-100 mM) 
concentration of NO was mediated by inhibition of mitochondrial 
cytochrome c oxidase and generation of ROS in mitochondria. On the 
other hand, persistent overproduction of NO acted as a proapoptotic 
modulator (through the interaction with metal ion, thiol, protein 
tyrosine, and ROS), i.e. activating caspase family proteases through 
the release of mitochondrial cytochrome c into cytosol, upregulation 
of the p53 expression (an essential indicator of NO-mediated 
apoptosis), and alterations in the expression of apoptotic-associated 
proteins, including the Bcl-2 family[816,845]. 
    In animal models, impaired apoptotic debris clearance leads 
to the development of autoimmunity[786,787]. It is believed that 
the onset of ADs can be linked to the inefficient removal of 
apoptotic cells[847]. Patients with autoimmune conditions have 
circulating antibodies that can react with the surfaces of dying cells. 
Particularly antiphospholipid autoantibodies bound to externalized 
phosphatidylserine on apoptotic cells (this nonspecific ligand 
can be also externalized on necrotic cells[778]) can have serious 
consequences for the outcome of apoptotic cell clearance leading to 
its deficiency[848]. They can opsonize apoptotic cells for recognition 
by macrophage Fc receptors, thus converting the antiinflammatory 
signaling of apoptotic cell removal to the proinflammatory 
signaling stimulated by Fc receptor-mediated phagocytosis[849]. The 
same is conceivable for other autoantibodies that recognize self-
molecules displayed on the surface of apoptotic cells, and this may 
brake the barrier of self tolerance necessary for the generation of 
autoimmunity[847]. 
    Recent investigations have focused on the cross-talk between the 
autophagic and apoptotic signaling pathways[850,851]. Autophagy can 
be a precursor and even an initiator of apoptosis, and conversely, 
apoptotic signaling can lead to the activation of autophagy[852,853]. 

T. gondii infection
The parasite manipulates multiple strategies to downregulate the 
host’s defense responses, including subverting intracellular signaling 
pathways in infected cells to evade immunity[531].
    Autophagy. Many viruses, bacteria, and parasites encode virulence 
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factors that impair the function of autophagy proteins[854-857]. In host 
cells T. gondii survives by avoiding lysosomal protease degradation, 
but autophagy can reroute the parasitophorous vacuole (PV) to the 
lysosomes and cause parasite killing[858]. Muniz-Feliciano et al[858] 
reported that T. gondii may deploy a strategy to prevent autophagic 
targeting to maintain nonfusogenic nature of the vacuole due to 
its unique composition lacking host proteins. However, Ling et 
al[798] demonstrated also vacuolar and plasma membrane stripping 
and autophagic elimination of the parasite in primed effector 
macrophages. 
    Large amounts of parasite products accumulated in cells induce 
necrosis[859,860]. It was demonstrated that proliferation of T. gondii 
suppresses host cells autophagy[851]. HeLa cells infected with T. gondii 
have strongly expressed autophagic markers, microtubule-associated 
protein 1 light chain (LC3) and Beclin 1 protein (concentrated near 
the PVs). The subsequent proliferation of tachyzoites suppressed 
HeLa cell autophagy, which can promote infected host cell survival 
and serve as a persistent source of foreign antigens, thus eventually 
leading to development of autoimmunity[851]. 
    Li et al[861] showed that induction of autophagy by T. gondii was 
involved in the tachyzoite to bradyzoite transformation in vitro. It 
appeared that both TgAtg3 (a key autophagy protein) and TgAtg8 
were expressed at a significantly lower level in bradyzoites than 
in tachyzoites. Atg3 was found to be essential for maintaining 
mitochondrial integrity and for normal intracellular development of 
tachyzoites[862]. Interestingly, NO was suggested to play an important 
role in triggering tachyzoite to bradyzoite stage conversion[863]. Nb. 
recently Watts et al[510] challenged the prevailing notion of bradyzoites 
as dormant nonreplicative entities in chronic toxoplasmosis, because 
they revealed dynamic cyclical, episodic replication of bradyzoites 
within mature tissue cysts in vivo. 
    Halonen[864] showed that in IFN-γ-stimulated astrocytes, autophagy 
of disrupted vacuoles and/or dead parasites did not occur but rather 
that degradation of the pathogen occurs in the host cell cytoplasm. 
Delivery of T. gondii antigens from the cytosol to the endolysosomal 
compartments in the astrocytes may present these haptenated antigens 
via the MHC class II pathway and function as an antigen-presenting 
cell for the parasite in the brain. It must be noted that T. gondii 
tachyzoites downregulated MHC class II expression in microglia and 
astrocytes[865,866]. 
    Apoptosis. T. gondii triggers the secretion of antiinflammatory 
cytokines, such as IL-10 and TGF-β, thus suppressing the 
development of the TH1 immune responses and deactivating 
macrophages[560-562]. The parasite inhibits also DC production 
of IL-12 through expression of endogenous lipoxin A4, a potent 
arachidonate-derived endogenous downregulator of IL-12 
production[548]. Manipulation of apoptosis plays a critical role in the 
pathogenesis of several intracellular pathogens. T. gondii infection 
is known to induce host-cell apoptosis in several selected cell 
lineages. Nishikawa et al[551] found that when using a Toxoplasma-
infected macrophage cell line, J774A.1, treatment with IFN-γ 
significantly enhanced apoptosis in noninfected bystander cells 
while parasitized cells became relatively resistant. They established 
that apoptosis in bystander host cells was due to the secretion of 
NO and other soluble factors released by parasite-infected cells[551]. 
Moreover, induction of apoptosis in intestinal Peyer’s patch T cells 
and the ocular tissue of mice infected with the parasite has also been 
reported[550,867]. Similarly, induction of apoptosis in monocytes has 
been reported[551]. In particular, supernatants from T. gondii-infected 
mouse macrophages can induce apoptosis in bystander macrophages 
but not in the infected cells, and NO was identified as a proapoptotic 

molecule for macrophages[551]. Recently, D’Angelillo et al[544] found 
that T. gondii dense granule antigen 1 (GRA1) stimulated apoptosis 
of monocytes by interfering with the classical endogenous TGF-β 
signal transduction pathway. GRA1 activated TGF-β transcription 
and expression in monocytes (but not in lymphocytes) from both 
Toxoplasma-infected and uninfected individuals[544]. 
    Interestingly, acute T. gondii infection induced CD4+ T cell 
apoptosis (the cells exhibited DNA fragmentation pattern) as 
a long-term consequence to T cells rendered anergic[549]. An 
increased apoptosis of activated T cells may contribute to transient 
immunologic hyporesponsiveness observed in acute T. gondii 
infection and pathogen persistence in the infected host cells. 
Decreased production of IL-2[624] and enhanced synthesis of IL-10 
and RNI during acute stage of the parasite infection[622-624], may have 
a role in the augmented level of apoptosis[582]. 
    Virulent strains of T. gondii elicited high levels of host 
cell apoptosis through overproduction of proinflammatory 
cytokines[576,577]. Type I strains owe their lethality at least in 
part to an abnormal over-induction of normally protective TH1 
cytokines[573,574], and may be more prevalent in particular during 
ocular toxoplasmosis[868,869]. However, the parasite employs several 
immunosuppressive responses in infected cells because, for example, 
intracellular macrophage infection results in resistance to multiple 
inducers of apoptosis, including UV irradiation, gamma irradiation, 
IL-2 deprivation[575,580], through mechanisms such as reduced caspase 
activation, inhibition of mitochondrial cytochrome c release, and 
decreased activity of the poly(ADP-ribose) polymerase protein[580,870]. 
Moreover, apoptosis is blocked by indirect mechanisms also in 
uninfected bystander cells, thereby modulating the inflammatory 
response to the pathogen[870]. This is a survival strategy employed 
by the parasite to maintain host cell viability in an environment of 
proapoptotic mediators during infection[871]. 
    T. gondii has been shown to inhibit the apoptotic response of its 
host cell by interacting with multiple apoptotic regulatory systems 
to render the host refractory to apoptosis during critical phases of 
intracellular infection, including parasite invasion, establishment, and 
replication (Table 32)[872].
    T. gondii extensively modifies apoptosis of its own host cell and/
or of uninfected bystander cells[870]. After infection, apoptosis is 
triggered in T lymphocytes and other leukocytes, thereby leading to 
suppressed immune responses to the parasite. The intriguing dual 
activity of T. gondii to both promote and inhibit apoptosis requires 
a tight regulation to promote a stable parasite-host interaction and 
establishment of persistent toxoplasmosis[870]. NO probably play a 
decisive role in this process because of its dichotomous function 
(beneficial and detrimental) during infection with the parasite[877]. 
    NF-κB plays an important role in development of innate and 
adaptive immunity in the host during T. gondii infection[558,728,729]. 
Signaling via the NF-κB cascade is pivotal for innate recognition 
of microbial products, and parasite, bacterial and viral pathogens 
have evolved ways to subvert this way of signaling to avoid their 
killing[728,729]. Molestina et al[578] suggested that activation of NF-
κB plays an important role in stimulation of antiapoptotic gene 
expression by T. gondii. Many parasitic, bacterial and viral pathogens 
have evolved ways to subvert NF-κB signaling to promote their 
survival. In T. gondii-infected cells, the termination of NF-κB 
signaling was associated with reduced phosphorylation of p65/RelA, 
an event involved in the ability of NF-κB to translocate to the nucleus 
and bind DNA[558,728]. Payne et al[577] and others[878] demonstrated a 
profound inhibition of caspase activation and a requirement for the 
host transcription factor NF-κB function in the T. gondii-mediated 
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Table 32 Intrinsic and extrinsic apoptotic pathways modulated by T. gondii  (acc. to Carmen & Sinai [872]; with own modification). 

Apoptotic pathways Effect of T. gondii infection Refs 

1. Intrinsic pathway

  Cytochrome c release Inhibition [580,873]

  Apoptosome Inhibition of apoptosome activity [579]

  Caspase 9 Inhibition of caspase 9 activation [873]

  Bcl-2 family Increased transcription: Bcl-2, Bfl-1, Bcl-xL, Mcl-1 [578,580]

  Proapoptotic multidomain Decreased Bax [873]

  Proapoptotic BH3-domain only Decreased Bad [873]

2. Extrinsic pathway

  Caspase 8 Inhibition of activation [873]

  Caspase 3 Inhibition of activation [873]

  IAPs Increased expression of NAIP1 and 2, c-IAP1 and 2, and XIAP [578]

  Signaling cascades JNK Decreased phospho-JNK following UV exposure [873]

   NF-κB Activation of both host IKK and parasite encoded kinase (TgIKK) [578,874,875]

   PI3K Activation [876]

   Erk1/2 Activation [876]
UV, ultraviolet light; IKK, inhibitor of kappa kinase; Bcl-2, Bcl-xL, Bfl-1, Mcl-1 (the antiapoptotic proteins); Bax, Bad (the proapoptotic proteins); IAP,  
(c-IAP1 and 2 inhibit caspases);  IKK, I kappa kinase; TgIKK, Toxoplasma gondii IKK; JNK, c-Jun N-terminal kinase; NF-κB, nuclear factor kappa B; NAIP1, 
NLR family apoptosis inhibitory protein 1; XIAIP, X-linked inhibitor of apoptosis protein; PI3K, phosphoinositide 3-kinase; Erk1/2, extracellular-signal 
regulated kinases 1/2. 

blockade of host cell apoptosis. They suggested that the parasite 
activated the host survival response, thereby increasing the overall 
resistance of infected cells to apoptotic stimuli.
    In mice, NO nitrosylated and inactivated proinflammatory 
molecules, such as NF-κBp65, and reduced TNF expression and 
signaling. iNOS-derived NO hampered both TNF-αnd T cell-
mediated parasite brain invasion[879]. NO generated by iNOS is critical 
for defense against intracellular pathogens, including T. gondii, 
but may also mediate inflammatory tissue damage[879]. Scharton-
Kersten et al[880] found that iNOS was essential for host control of 
persistent (but not acute) infection with the parasite. Production of 
NO by activated murine macrophages is also thought to represent an 
important mechanism to restrict replication of T. gondii. However, 
reduced expression of the iNOS after infection with T. gondii 
facilitated parasite replication in activated murine macrophages[579]. 
    Finally, Begum-Haque et al[525] provided evidence for the 
correlation of apoptosis with the host’s genetic in toxoplasmosis. 
The authors demonstrated that following infection with the same P 
strain of parasite, the level of apoptosis was significantly higher in 
susceptible C57BL/6 mice than in resistant CBA/J animals. A higher 
level of activation induced cell death was found in susceptible T. 
gondii infected C57BL/6 mice than in resistant CBA/J animals. It 
appeared that apoptosis in T cells of susceptible mice was associated 
with altered induction of Bcl-2/Bax (the proapoptotic/antiapoptotic 
molecules, respectively) and loss of mitochondrial transmembrane 
potential. Although both CD4+ and CD8+ T cells were found to be 
susceptible to apoptosis, CD4+ T cells were sensitive to Fas mediated 
death[586], whereas CD8+ T cells were insensitive to this biosignal[582]. 

LIVER AND/OR KIDNEY FUNCTION DAMAGE 
CAUSED BY T. GONDII INFECTION IS FRE-
QUENTLY ASSOCIATED WITH DEVELOPMENT 
AND CLINICAL COURSE OF SEVERAL ADs
ADs
Liver disease is a major cause of illness and death worldwide[881]. 
Several patients with various ADs, including SLE, systemic sclerosis 
(SSc), rheumatic disease, Sjögren syndrome, antiphospholipid 

syndrome, polymyositis or dermatomyositis, autoimmune hepatitis 
(AIH), primary biliary cirrhosis (PBC), autoimmune thyroid disease, 
and inflammatory bowel disease, have laboratory evidence indicating 
liver[882-895] and/or kidney[896-899] function impairment or injury during 
their clinical course. It must be noted that some ADs with liver 
abnormalities, such as AIH, PBC, and primary sclerosing cholangitis 
(PSC) may develop in patients with systemic rheumatic diseases as 
having overlap syndromes (Table 33)[892]. 
    Subclinical liver involvement manifesting as elevated serum liver 
enzymes and sometimes associated with portal areas inflammation is 
frequent in SLE[882,883]. For example, Chowdhary et al[883] identified 40 
SLE patients with liver enzyme abnormalities and biopsies performed 
in 20 individuals showed changes characteristic for nonalcoholic fatty 
liver disease (n = 8), autoimmune hepatitis (AIH) (6), primary biliary 
cirrhosis (3), hepatitis C (3), and cryptogenic cirrhosis (2). In another 
study[893], retrospective analysis of 147 patients with SLE showed that 
36 of them had liver enzyme abnormalities, and 72.3% of this group 
fulfilled the criteria for AIH.

T. gondii infection and liver and/or kidney injury
In humans, latent chronic toxoplasmosis may lead to development 
of several liver diseases, including unexplained liver damage, 
cryptogenic liver cirrhosis, nonalcoholic steatohepatitis, and 
biliary cirrhosis[131,133,134,908]. Experimental T. gondii infection was 
associated with liver and kidney injury manifesting with a significant 
increase in serum alanine (AlAT) and aspartate aminotransferase 
(AspAT) activities, blood urea nitrogen level, decreased serum 
albumin concentration and alkaline phosphatase activity, albumin 
to globulin ratio, and marked abnormalities in plasma triglyceride 
and cholesterol levels[909-911]. Treatment with azithromycin caused 
normalization of serum AlAT and AspAT activities and improvement 
of total serum protein, albumin and globulin concentrations, and 
albumin/globulin ratio, in mice[910] (Tables 34-36). Nb. it must be 
noted that serum alkaline phosphatase as well as AlAT and AspAT 
activities were found to be markedly increased in pregnant women 
with toxoplasmosis as compared with controls[910A]. The difference 
in the serum alkaline phosphatase concentrations between mice and 
pregnant women may be explained by the route of T. gondii infection 
(intraperitoneal vs. probably oral, respectively) because this enzyme 
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Table 33 Prevalence of liver disease overlap syndromes in selected 
rheumatic patients (acc. to Selmi et al [892]).

AIH PBC PSC Refs

AIH - 4.2 to 9% 1.4 to 49.1% [900]

SLE 2.7 to 20% 2.7 to 15% 1 case [883,901,902]

pSS 6 to 47% 37 to 57% 11 cases [902-904]

SSc 11 cases 51.20% 1 case [902,905,906]

Table 34 Serum markers of liver and kidney injury in BALB/c mice 
infected intraperitoneally with tachyzoites of T. gondii (RH strain) and 
examined after 5 days (acc. to Da Silva et al [909]; with own modification).
Serum biochemical parameters Controls (n = 10) Infected animals (n = 10)

AlAT (U/L) 35.21 ± 11.73 258.13 ± 84.37 a 

Alkaline phosphatase (U/L) 338.44 ± 120.12 190.87 ± 78.66 a

Albumin (g/dL) 2.21 ± 0.03 1.51 ± 0.08 a

Total proteins (g/dL) 5.80 ± 0.40 4.55 ± 0.44 a

Urea (mg/dL) 69.28 ± 3.10 100.12 ± 25.75 a

Creatinine (mg/dL) 0.96 ± 0.32 0.87 ± 0.24
Results represent means ± SD. aStatistically significant results compared 
with controls (p < 0.05). AlAT, alanine aminotransferase. Nb. it must 
be noted that serum alkaline phosphatase as well as AlAT and AspAT 
activities were found to be markedly increased in pregnant women 
with toxoplasmosis as compared with controls[910A]. The difference 
in the serum alkaline phosphatase concentrations between mice and 
pregnant women may be explained by the route of T. gondii infection 
(intraperitoneal vs. probably oral, respectively) because this enzyme is 
elevated mainly in the liver and bile duct disorders.

is elevated mainly in the liver and bile duct disorders.
    Acute T. gondii infection in mice caused a marked reduction in 
serum butyrylcholinesterase (BChE) activity (p < 0.01) and liver 
damage, and positive significant correlations between serum BChE 
activity and BChE activity in liver (r = 0.89)[909]. In addition, serum 
albumin concentrations were markedly decreased (Tables 34-
36), and previously it was reported that this biomarker is strongly 
correlated with BChE activity[912]. At necropsy, liver of the infected 
animals showed random necrosis foci combined with the presence of 
tachyzoites and cysts containing bradyzoites, as well as an increase in 
spleen size. 
    The above findings are very important because acetylcholinesterase 
(AChE) and BChE are biomarkers of low-grade systemic 
inflammation[913-915], and it was suggested that the elevation of these 
two parameters may predict development of type 2 diabetes mellitus 
and Alzheimer disease[916]. These associations are in line with my 
earlier reports suggesting an important role of T. gondii infection 
in inducing of these two clinical entities[102,118]. BChE also serves as 
a marker predicting the prognosis of diseases[30] because when the 
serum activity of the enzyme is low, a high-risk of death must be 
taken into consideration[913, 917]. In middle-aged and elderly men and 
women Calderon-Margalit et al[912]showed that serum BChE activity 
was inversely related to age and was positively correlated with serum 
levels of albumin (r = 0.35, p < 0.001), cholesterol (r = 0.31, p < 
0.001), and triglycerides (r = 0.30, p < 0.001). Moreover, the enzyme 
activity was associated with overweight, obesity, and body fat 
distribution parameters (e.g., body mass index, r = 0.20, p < 0.001). 
lndividuals with the lowest serum BChE activity had significantly 
higher mortality than those with the highest values[912]. Nb. recently, a 
positive association between T. gondii seropositivity and obesity has 
been demonstrated, and subjects with obesity had markedly higher T. 
gondii IgG titers than non-obese participants[918]. 
    Cholinesterases are enzymes present in cholinergic and 
noncholinergic tissues, as well as in blood and other body fluids. 
The AChE is a membrane-bound enzyme mainly found in the brain, 
muscles, erythrocytes, lymphocytes, and cholinergic neurons[919,920], 
while BChE is present in the intestine, liver, kidney, heart, lung, 
brain, and serum[921,922]. AChE inhibits activation of macrophages and 
release of proinflammatory cytokines, such as IL-6, TNF-α, IL-1, and 
IL-18[923]. In rats, T. gondii infection was associated with a significant 
increase in the activity of AChE in whole blood and lymphocytes, 
and a positive correlation was found between the enzyme activity 
and number of lymphocytes (p < 0.01)[920]. The BChE is responsible 
for cholinergic neurotransmission[924], immune responses[903], 
cardiovascular risk and lipid metabolism[912]. Autonomic dysfunctions, 
characterized by lower vagal and higher sympathetic tone have been 
documented in chronic inflammatory diseases and aging, associated 
with a certain level of systemic inflammation[925-928]. A correlation 
between higher vagal tone as determined by increased frequency 
component of heart rate variability and lower proinflammatory 
cytokine levels has been reported[925,927]. Cholinergic modalities 
acting through vagus nerve and/or α7 subunit-containing nicotinic 
acetylcholine (Ach) receptor-mediated mechanisms have been shown 
to suppress excessive inflammation in several experimental models 
of disease[925-928]. Vagal Ach binds with this receptor expressed on 
tissue macrophages in the monocyte-macrophage system, to inhibit 
the synthesis of proinflammatory cytokines such as TNF, IL-1, IL-
6, IL-8, and high-mobility group box 1[925,927]. Interestingly, nicotine 
increased the Ach concentration in the plasma of rabbits[929], and T 
and B cells, macrophages and DCs all express several components 
necessary for a functional cholinergic system[930]. It must be 

also noted that the cholinergic antiinflammatory pathway play 
an important role in the neuroimmune basis of acupuncture[931], 
frequently used in several neurodegenerative diseases[932] and ADs, 
including rheumatoid arthritis[933], psoriasis[934], inflammatory bowel 
disease, epilepsy, and migraine[932,935].
    In this context, many comorbidities reported in patients with 
ADs and associated with several viral and other infectious agents, 
including T. gondii, may be at least in part explained by liver 
damage caused by these pathogens[98,909]. The hepatic injury probably 
establishes a favorable local and systemic environment in the body 
that facilitates growth and proliferation of these infectious agents, 
further intensified by the impaired cholinergic modulation of systemic 
inflammation. In addition, patients with ADs are usually subjected to 
several invasive procedures, such as endoscopy, otorhinolaryngologic 
investigation, dental care, surgery, and frequently receive intravenous 
medications, fluids, blood and/or its components that all increase risk 
of viral, bacterial and/or parasite infections[121,936]. 
    Several authors reported that hepatitis with a clinical picture 
resembling acute viral hepatitis may result from T. gondii 
infection[937-939]. T cell function in patients with Australia antigen 
(AA)-associated hepatitis have shown that persistence of this 
antigen was related to impaired PHA-induced lymphocyte 
transformation[940,941]. Viral hepatitis appeared unlikely to be the 
sole causal agent in primary biliary cirrhosis, because AA has 
been demonstrated in the serum of only 15-20% of patients[942-944]. 
Because development and clinical course of these comorbidities are 
often associated with an increased production of various pro- and 
antiinflammatory cytokines which are overlapping with TH1 and TH2 
types of cytokines generated by T. gondii infection, such an excess 
of various factors and released biomediators may exert beneficial or 
harmful effects on the host, depending on their final constellations. 
These suggestions are in agreement with recent findings that 
emphasized an important role of T. gondii in development of liver 
damage and T. gondii-related hepatitis[910,945,946]. The significant 
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Table 35 Liver function damage in mice intraperitoneally infected with 3 x 106 T. gondii trophozoites and treated with azithromycin (250 mg/kg/day for 3 
days, p.o.) (acc. to Al-Kaysi et al [910]; with own modification).

Group of animals Total serum 
protein concn (g/dL)

Serum albumin 
concn (g/dL) AlAT (U/L) AspAT (U/L) Serum globulin 

concn (g/dL) A/G ratio

Controls
7.42 4.86 9.6 10.6 2.56 1.89

± 0.12 ± 0.09 ± 0.26 ± 0.12 ± 0.03 ± 0.03

Infected
11.02 a 3.50 a 59.80 a 24.20 a 7.52 a 0.47 a

± 0.22 ± 0.26 ± 5.71 ± 1.33 ± 0.19 ± 0.12

Infected and treated
8.38 3.8 10.6 10 4.58 0.83

± 0.06 ± 0.05 ± 0.12 ± 0.16 ± 0.03 ± 0.02

Not infected and treated
7.44 4.88 9.2 10 2.56 1.96

± 0.11 ± 0.13 ± 0.29 ± 0.16 ± 0.08 ± 0.10
The values are means ± SE of 10 animals per group. aStatistically significant differences between respective groups were calculated using ANOVA test at p < 
0.05. A/G, serum albumin to globulin concentration ratio. Nb. it must be noted that serum alkaline phosphatase as well as AlAT and AspAT activities were 
found to be markedly increased in pregnant women with toxoplasmosis as compared with controls[910A]. The difference in the serum alkaline phosphatase 
concentrations between mice and pregnant women may be explained by the route of T. gondii infection (intraperitoneal vs. probably oral, respectively) 
because this enzyme is elevated mainly in the liver and bile duct disorders.

Table 36 Serum biochemical markers of liver and kidney damage in ewes and does with toxoplasmosis (positive serum IgM antibodies directed against T. 
gondii) (acc. to Mahboub et al [911]; with own modification).

Bioparameters Controls 
(n = 20) 

Sheeps with T. gondii 
infection (n = 15)

Controls 
(n = 20)

Goats with T. gondii 
infection (n = 15) 

Total protein (g/dL) 4.20 ± 0.15 4.10 ± 0.37 5.44 ± 0.27 4.03 ± 0.80 a

Albumin (g/dL) 1.81 ± 0.20 1.24 ± 0.13 a 2.15 ± 0.23 0.84 ± 0.3 a

Globulin (g/dL) 2.39 ± 0.07 3.11 ± 0.28 a 3.47 ± 0.27 3.19 ± 0.63

A/G ratio 0.85 ± 0.08 0.41 ± 0.087 a 0.72 ± 0.07 0.34 ± 0.23 a

AspAT (U/mL) 58.87 ± 1.92 33 ± 2.69 a 67.23 ± 5.09 47.33 ± 3.56 a

AlAT (U/mL) 15.11 ± 0.43 22.86 ± 1.99 a 15.071 ± 0.81 14.67 ± 2.04

BUN (mg/dL) 24.35 ± 2.07 32.26 ± 2.26 a 42.50 ± 2.74 25.34 ± 5.64 a

Triglyceride (mg/dL) 17.82 ± 1.29 51.49 ± 6.65 a 25.28 ± 2.53 20.38 ± 5.95

Cholesterol (mg/dL) 41.61 ± 4.33 57.84 ± 5.17 a 84.15 ± 5.85 51.79 ± 17.80 a

CRP (mg/dL) 8.40 ± 1.70 10.71 ± 2.48 8.12 ± 2.37 12.00 ± 8.49 a

Results are means ± SE. aStatistically significant results compared with respective control values (p < 0.05). AspAT, aspartate aminotransferase; AlAT, 
alanine aminotransferase. BUN, blood urea nitrogen. CRP, C-reactive protein. Nb. it must be noted that serum alkaline phosphatase as well as AlAT and 
AspAT activities were found to be markedly increased in pregnant women with toxoplasmosis as compared with controls[910A]. The difference in the 
serum alkaline phosphatase concentrations between mice and pregnant women may be explained by the route of T. gondii infection (intraperitoneal vs. 
probably oral, respectively) because this enzyme is elevated mainly in the liver and bile duct disorders.

relationship between the number of hepatic stellate cells (HSCs) 
(known to play an important role in development of fibrosis) and T. 
gondii antigens may represent an active role of these cells in liver 
pathology and the pathobiology of the parasite-related hepatitis[945], 
especially that HSCs might also affect function of antigen presenting 
cells, such as DCs, liver macrophages, and Kuppfer cells[947].
    All these data suggest that liver damage caused by latent chronic T. 
gondii infection has an important impact on both innate and acquired 
immunity of the host, development of various comorbidities and their 
clinical course, and improvement or worsening of the host’s health. 
The prevalence of serum anti-T- gondii IgG antibodies in different 
ADs, including PBC, has been presented in Tables 37 and 38[98,129].
    Finally, it must be emphasized that autoantibodies play an 
important role in the pathophysiology of renal involvement in 
systemic ADs, such as SLE, systemic vasculitis, Goodpasture 
syndrome, and for example in Wegener’s granulomatosis the current 
therapeutic standard is plasma exchange removing pathogenic 
immune complexes and antibodies[956]. These findings are in line 
with several reports suggesting a close relationship between T. gondii 
infection and development of renal diseases[957], such as nephrotic 
syndrome[958,959], various types of glomerulopathy[959-962], and kidney 
transplant recipients[963-966]. In this context, it should be noted that 
many excretory/secretory protein antigens with molecular weights 
ranging from 19 to 110 kDa released from the purified tachyzoites/
bradyzoites of T. gondii and various components of the parasite in 

samples of human and animal sera, have been demonstrated in both 
animals and humans infected with the parasite[950,967]. These foreign 
antigens, autoantigens, antibodies, immune complexes, cytokines 
and other biomediators circulating in blood were filtered by the 
liver and kidneys, settled down in them, and thus participated in the 
development of their impaired function and damage. 
    In summary, these findings suggest that latent chronic T. gondii 
infection is one of the key pathogens responsible for liver and/
or kidney damage in patients with various ADs. Abnormalities 
associated with these injuries may affect innate and/or acquired host 
immunity and participate in triggering and persistence of several 
ADs, especially that anti-Toxoplasma IgG antibodies have been 
found in both the sera of patients suffering from many of these 
clinical entities, and healthy adults[98,101,968], which is in agreement 
with a cosmopolitan nature of the parasite.. 

T. GONDII INFECTION AND AUTOIMMUNE 
CARDIOVASCULAR DISEASES
Enhanced generation of proinflammatory cytokines and NO by 
the parasite is important in the pathogenesis of these disorders
ADs
The Global Burden of Disease data estimated that approximately 
8.8% of the disability-adjusted life years of the world’s low- and 
middle-income countries may be attributable to cardiovascular 
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Table 37 Prevalence of anti-T. gondii IgG antibodies in 1514 serum 
samples of patients with various ADs (acc. to Shapira et al [98]; with own 
modification).
Disease/Clinical entity Anti-T. gondii 

IgG positive
Geographical 
region

P-valuec

Antiphospholipid syndrome 
(APS)a

82/159 (52%) Europe < 0.0001

Cryoglobulinemiab 65/117 (56%) Europe < 0.0001

ANCA-associated vasculitis 45/68 (66%) Europe < 0.01

Autoimmune thyroid diseases 68/120 (57%) Europe < 0.0001

Systemic sclerosis 46/80 (58%) Europe < 0.0001

Rheumatoid arthritis 27/35 (77%) Europe < 0.0001

Rheumatoid arthritis 55/152 (36%) Latin America NS
aIncluding primary and secondary APS; b Including cryoglobulinemia 
and mixed cryoglobulinemia. c P values for the comparison with 
matched healthy controls of the same geographical region. In addition, 
the following specific ADs were associated with markedly increased 
serum anti-T. gondii IgG antibodies/autoantibodies: polymyositis [948], 
RA [107-109], Hashimoto’s and Graves’ diseases [15,105], Leśniowski-
Crohn’s disease [120,121], antiphospholipid syndrome [153], Wegener’s 
granulomatosis and other vasculitides [154], autoimmune bullous disease 
[163], SLE [141], diabetes mellitus type 1 and 2 [102,104], optical nerve and 
retinal diseases with visual loss (the 22 kDa neuronal antigen found in the 
patients may represent T. gondii antigen [949, 950].

Table 38 Serum IgG levels of anti-infectious agents antibodies more 
prevalent in PBC compared with controls (acc. to Shapira et al [129]; with 
own modification).
Infectious agent Patients with PBC Controls P value

T. gondii (IU/mL) 53.4 ± 9.1 36.4 ± 7.6 < 0.001

EBV-EA AI 1.7 ± 0.2 0.9 ± 0.2 < 0.0001
AI, antibody index. EBV-EA, Ebstein-Barr virus - early antigen. Results 
are given as mean ± SE. Anti-EBV-EA antibodies concentrations positively 
correlated with anti-T. gondii antibody levels in those patients (Spearman 
correlation r = 0.35, p < 0.01). A similar positive correlation was detected 
in PBC patients between anti-EBV-EA and cytomegalovirus antibodies 
levels (r = 0.32, p < 0.01), which may suggest a secondary origin of their 
generation as compared with the primary and the same T. gondii-related 
IL-21 type 1 cytokine stimulus intensity required to control chronic viral 
infection [951-953]. It should be added that IL-21 mediates its critical 
immunosuppressive effects (it decreases specific immunoglobulin 
production [951,954]) by inducing IL-10 through IL-6 or IL-27 [955].

diseases[969,970]. The heart and the vascular system are frequently 
involved in several ADs, in particular SLE, RA, systemic sclerosis, 
primary antiphospholipid syndrome, systemic vasculitis, and these 
cardiovascular disorders are associated with the premature accelerated 
atherosclerosis[971-974]. Inflammatory mechanisms contribute to 
progressive heart failure, and myocardial infiltration by lymphocytes 
and mononuclear cells, increased expression of proinflammatory 
cytokines and circulating autoantibodies are frequently observed in 
autoimmune myocarditis and dilated cardiomyopathy[975-977]. In animal 
models, activated and self-antigen loaded DCs play an important role 
in inducing autoimmune myocarditis and heart failure[978]. 
    Molecular mimicry plays an important role in the autoimmune 
pathogenesis of heart diseases[979]. Patients with heart failure have 
significantly higher levels of proinflammatory cytokines, such as 
IL-6 and TNF-α, compared with healthy controls[980-982]. Studies 
in vitro showed that interleukins TNF-α, IL-1β, IL-6, and IL-2 
were found to be related to negative cardiac inotropic activity in a 
concentration-dependent manner, and mediated by NO as a result of 
iNOS induction via proinflammatory cytokines[983-986]. Interestingly, 
the elevated levels of proinflammatory cytokines, particularly IL-6, 
IL-1β, and TNF-α, have been repeatedly associated with depressive 
disorders[982,987-989], even in apparently healthy men[990]. Higher levels 
of proinflammatory markers IL-6 and C-reactive protein have been 
independently linked with depressive symptoms also in patients 
with heart failure, even after correcting for disease severity[987]. 
Conversely, ADs and severe infections are considered as risk factors 
for mood disorders[991]. It should be noted that T. gondii infection was 
also found to be associated with mood disturbances[413,992-996].

T. gondii infection
Acquired immunity induced by T. gondii is characterized by strong 
CD4+ and CD8+ T cells activity because parasite peptides are 
efficiently presented to parasite-specific T lymphocytes and TH1 type 
cytokines display cytotoxic T-lymphocyte activity against the infected 
target cells and the ability to produce large amounts of IL-12, IFN-γ, 
IL-1β, IL-18 and other proinflammatory mediators[239,997]. When 
produced in excess, proinflammatory cytokines end up damaging 
the host. Moreover, after priming with IFN-γ, macrophages exposed 
to microbial products or TNF-α produce high levels of NO and RNI 
responsible for microbicidal and microbiostatic activities, especially 
during the early phase of T. gondii infection[998]. It is important to 
note that both NO and TNF-α could induce egress of the parasite 
tachyzoites from the host infected cells[999,1000], and this may amplify 
earlier proinflammatory reactions. Cytokine production of CD8+ 
immune T cells are polarized to a TH1 response following stimulation 
with tachyzoite-infected macrophages[1001], and IL-15 (this cytokine 
shares some functions with IL-2) augments CD8+ T-cell-mediated 
immunity against infection with the parasite[1002]. In addition, IL-
17/IL-17 receptor-mediated signaling appeared to be important for 
generation of an optimal polymorphonuclear leukocytes response 
against T. gondii infection[1003,1004], and otherwise it is known that 
TH17 cells are a subset of CD4 effector T lymphocytes, and cytokine 
IL-17 is involved in the pathogenesis of ADs[1005,1006]. Furthermore, 
Langrish et al[1007] established that IL-23 is one of the pivotal factors 
required for the expansion of a pathogenic CD4+ T cell population 
characterized by the production of IL-17, IL-6, TNF, and other 
factors that induces triggering and maintenance of organ-specific 
inflammatory ADs. Interestingly, Munoz et al[1008] showed that IL-23 
mediated T. gondii-induced immunopathology in the gut resembles 
key features of inflammatory process in inflammatory bowel 
disease in humans and in models of experimental colitis in rodents, 

independent of IL-17. 
    Myocarditis. T. gondii infection is common in cats, and in one 
study of clinically ill animals, the antibodies against the parasite were 
detected in 31.6% of the 12,628 cats analyzed[1009]. Some cats had 
chronic toxoplasmosis manifesting as myocarditis with arrhythmias, 
and/or other diseases[1009-1012]. The worldwide seroprevalence of 
toxoplasmosis was estimated to be up to 77% causing inflammatory 
type of cardiovascular disease, with 19% of AIDS cardiomyopathy 
associated with acute myocarditis[26,969,1013,1014]. Myocarditis caused by 
T. gondii infection often manifests atrial and ventricular arrhythmias, 
heart failure, AV block and even sudden death, and in several patients 
focal myocarditis was the only sequel of acute toxoplasmosis[1015-1017]. 
Recently, Hamidinejat et al[1015] found that the positivity rate of 
increased serum anti-T. gondii levels of IgG and IgM antibodies 
among 48 patients aged 40-55 years with acute myocardial infarction, 
was markedly higher than in control volunteers (Table 39). The ORs 
for the associations were 4.86 with 95% CI = 2.05-11.53 and 6.83, CI 
= 1.43-32.79, respectively (80.82% probability estimated according 
to the Bradford Hill criteria indicated a causal association). It must be 
noted that T. gondii was found to be the second after rubella among 
three most frequent fetal heart infections[1018], and acute myocarditis 
due to the parasite was also described in newborns[1019]. Furthermore, 
the study of A’aiz et al[1020] demonstrated that 24.7% of sera from 
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54 women with toxoplasmosis were positive for anticardiolipin 
and antiphospholipid antibodies compared with no such antibodies 
revealed in 14 healthy controls (p < 0.0412). In addition, in patients 
with APS Zinger et al[153] found a significantly higher seroprevalence 
of IgM antibodies to T. gondii compared with controls, which may 
suggest acute or chronic infection with the parasite, especially that 
IgM antibodies may persist for years after infection[1021], and heart 
involvement is frequent in this clinical entity and SLE[1022,1023]. 
    Leak & Meghji[1011] reported 18 patients with T. gondii infection, 
who presented with heart disease characterized by arrhythmias 
(including atrial fibrillation, ventricular arrhythmias and heart block), 
atypical chest pain, pericarditis and cardiac failure. One of those 
individuals had acute toxoplasmosis and the other 17 patients had 
chronically increased anti-T. gondii titers. Azab et al[1024] estimated 
T. gondii antibodies in patients with cardiomyopathy and found that 
21.4% of 56 studied samples were positive, mostly in individuals 
with ischemic disease. In another study, Sibalic et al[1025] showed the 
presence of Toxoplasma specific antibodies (analyzed by the Sabin-
Feldman dye test, i.e. probably the best test available so far) in 86% 
of their 183 patients with cardiac diseases (74 of the patients had 
acute myocarditis, myopericarditis, or acute pancarditis; 83 had 
cardiomyopathy; and 26 had cardiac disorders of undefined type) 
and 21% of them had high titers, as compared with the values of two 
control groups (51% and 58%). 
    Chronic heart failure (CHF). Disturbances of the cardiovascular, 
neuroendocrine and immune systems are responsible for development 
of CHF. It was suggested that patients with CHF may be at increased 
risk of various opportunistic infections, especially T. gondii, due 
to their impaired immune status and global dissemination of the 
parasite[23]. Yazar et al[112] found that 66 of 97 patients with CHF had 
a significantly higher seropositivity rate for anti-T. gondii antibodies 
compared with 50 healthy volunteers (68% vs. 36%, p < 0.05). 
In addition, other authors reported that patients with CHF have 
elevated serum IL-6 levels[1026], and otherwise it was established that 
pretreatment of unelicited murine peritoneal macrophages with this 
cytokine enhanced intracellular multiplication of the parasite in a 
dose-dependent manner[208,1027]. 
    Persistent hypoxia in patients with CHF creates a beneficial 
tissue environment for the intracellular multiplication of the 
protozoan, because it induces production of host cell hypoxia-
inducible factor 1 (HIF1), required for the parasite growth and 
survival, even at physiologic oxygen levels[1028-1030]. HIF1α stimulated 
synthesis and release of proinflammatory cytokines IL-1, IL-
6, IL-8, NO, and different growth factors (including TGF-β3) by 
vascular endothelial cells (Table 40), and intensified subclinical 
inflammatory reactions[1030]. Nb. impaired function of the CO2, 
AQP1, AQP4 gas channels caused by chronic T. gondii infection 
may also result in hypoxia and thus enhance neroinflammation in 
autistic individuals[1031]. These abnormalities may at least in part 
be responsible for various biochemical disturbances and clinical 
manifestations observed in patients with CHF and some ADs, such as 
for example inflammatory bowel disease[120,1032].
    Vredevoe et al[1033] demonstrated that a subgroup of individuals 
with heart failure exhibited NK cell anergy to activation by cytokine 
stimulants such as IL-2 and IFN-γ. NK cells, which represent 
about 10-15% of peripheral blood lymphocytes, is an important 
cytolytic component of the innate immunity. IL-6 promotes NK cell 
production of IL-17 during toxoplasmosis[1034], and an exaggerated 
TH17 response may lead to severe inflammatory responses and 
development of ADs[1035,1036]. T. gondii can actively infect almost all 
nucleated cell type and preferentially invades immature DCs[563]. 

Table 39. Frequency of seropositive anti-T. gondii IgG and IgM antibodies 
in patients with acute myocardial infarction (acc. to Hamidinejat et al 
[1015]; with own modification).
Serum anti-T. gondii 
antibodies

Patients with acute 
myocardial infarction (n = 48)

Controls 
(n = 48)

IgG (+) 32 (66.66%) a 14 (29.2%)

IgM (+) 11 (22.9%) a 2 (4.2%)
a Statistically significant results compared with respective controls (p < 
0.05).

Table 40 Effects of hypoxia inducible gene expression [1030].

Erythropoietin

IL-1, IL-6, IL-8

Nitric oxide synthase-2 

Heme oxygenase-1

Ornithine decarboxylase; hexokinase 2

Phosphofructokinase L; phosphoglycerate kinase-1

Pyruvate kinase M; glucose transporter-1, -3 

Lactate dehydrogenase A 

Glyceraldehyde-3-phosphate dehydrogenase

Insulin-like growth factor-2; enolase 1

Aldolase A, C; adenylate kinase 3

Pituitary adenylate cyclase-activating polypeptide

Transforming growth factor β3

Vascular endothelial growth factor

Persson et al[243] demonstrated rapid transmission of T. gondii from 
infected DCs to adjacent effector NK cells. However, the parasite 
fails to activate DCs in the process, and renders them resistant to 
subsequent activation by TLR ligands or the immune-system-intrinsic 
maturation signal CD40L[563]. It should be emphasized that maternal 
microchimerism may also play an important role in dissemination of 
T. gondii and triggering/development of some heart ADs because it 
was reported that maternal cells (“immigrant cells”) were identified 
in affected cardiac myocytes, probably being targets of the immune 
response (i.e. “allo-autoimmunity”)[1037,1038], and therefore one 
cannot exclude that such cells are packed with the parasite and/or 
its antigens. Finally, it is important to note that extracellular vesicles 
also are involved in the pathogenesis of ADs[1039] and T. gondii 
antigen-pulsed DC-derived exosomes, as well as exosomes released 
from macrophages infected with the parasite or other intracellular 
pathogens induced a stimulatory proinflammatory response in vitro 
and in vivo against infection with intracellular microbes[1040,1041].
    The above-presented data may be supported by the recent finding 
of strong correlations between the prevalence of toxoplasmosis 
and heart diseases in a set of 88 countries, e.g. the highly positive 
correlation was found between prevalence of toxoplasmosis and 
the inflammatory heart disease (DALY: p = 0.025, mortality: p < 
0.001)[24]. Moreover, the accelerated atherosclerotic process in ADs 
associated with the heart and/or vessels inflammation[768,1042,1043] 
probably is due to chronic T. gondii infection[525]. 
    In summary, there is a high frequency of cardiovascular diseases 
in patients with ADs. Studies in vitro showed that proinflammatory 
cytokines such as TNF-α, and IL-2 have been related to negative 
cardiac inotropic effects in a concentration-dependent manner, and 
mediated by NO. Acute and latent chronic T. gondii infections may 
seriously affect heart function and clinical course of cardiac disease 
leading to triggering and development of cardiovascular diseases in 
patients with ADs, particularly in those with impaired innate and/
or acquired immunity. Increased generation of IL-12, IFN-γ, IL-6, 
TNF, IL-1, and especially IL-12[1044], IL-17 and IL-23, as well as NO 
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during such infections may be involved in the pathogenesis of several 
ADs. The accelerated atherosclerotic process frequently observed in 
these clinical entities may at lest in part be due to T. gondii infection. 

POSSIBLE LINK BETWEEN LATENT CHRONIC 
T. GONDII INFECTION AND DEVELOPMENT 
OF RA
Important role of the pathogen’s cysteine cathepsin proteases in 
these processes
Several authors suggested that bacterial, viral and parasitic infections 
are known to induce and/or exacerbate ADs[1045-1047], mainly by 
the mechanism of molecular mimicry[1046]. T. gondii infection has 
been reported to occur at increased frequency in RA[98,107,111,1048-

1051]. For example, El-Henawy et al[1049] found a significantly higher 
seroprevalence of anti-Toxoplasma IgG antibodies among RA patients 
(46/60) compared to controls (29/60) (76.7% vs. 48.3%, respectively, 
p < 0.001), and the anti-T. gondii IgG titre was markedly higher 
in patients (median, range = 232.940; 8.949-653.242 IU/mL) than 
controls (68.820; 2.450-318.945 IU/mL), respectively, p < 0.001). 
A positive correlation was established between disease activity and 
Toxoplasma seropositivity[1048-1050]. Recently, a meta-analysis of 
articles addressing the association between RA and toxoplasmosis 
showed that the combined OR was 3.30 (95% CI: 2.05 to 5.30) with 
p < 0.0001)[1051]. 
    T. gondii seropositive RA patients had longer disease duration 
and morning stiffness, anti-cyclic citrulinated protein antibodies and 
rheumatoid factor (RF) than the parasite seronegative individuals[1048]. 
It was demonstrated that such patients develop antibodies to proteins 
containing citrulinated arginine residues, as essential parts of the 
antigenic determinants recognized by the RA autoantibodies[1052]. 
Citrulination (or deimination) is an enzyme-catalyzed process in 
which the positively charged NH2-group of arginine is hydrolyzed 
to a neutral oxygen group, and it is this oxygen group of peptidyl 
citruline that is specifically recognized by autoantibodies in 
RA[1052,1053]. It must be noted that citrulination only occurs in certain 
specialized cell types (e.g. myelin basic protein in glia cells) and 
in certain types of dying cells[1052,1053]. Importantly, T. gondii share 
a high degree of sequence homology with human histones, and it 
was suggested that the same or similar histone posttranslational 
modifications (PTM) (e.g. citrulination, acetylation, methylation, 
phosphorylation, ubiquitination) are present in the parasite and that 
these PTM have similar functions in T. gondii[1054]. Recently, it was 
reported that the positivity for anti-citrulinated protein antibodies 
anti-CCP-2 and anti-CCP-3 provide the most specific identification 
of RA patients[1055]. Interestingly, cigarette smoking is not associated 
with the development of anti-peptidyl arginine deiminase 4 
autoantibodies in RA[1056]. 
    T. gondii is an arginine auxotroph that derives its arginine 
requirement from the host cell cytoplasm. Fox et al[182] showed that 
arginine deprivation efficiently blocked the replication of intracellular 
parasite, and addition of citruline rescued the growth defect observed 
in the absence of exogenous arginine. Arginine starvation was found 
to efficiently trigger differentiation of replicative tachyzoites (in 
both type I strain RH and type II strain PLK) into slow growing 
latent bradyzoites forms contained within stable cyst-like structures, 
and these same pathogens expressing bradyzoites antigens can 
be efficiently switched back to rapidly proliferating tachyzoites 
several weeks after arginine starvation[182]. T. gondii infection elicits 
a strong proinflammatory TH1 immune response, and upregulation 
of host arginine is an important mechanism that can deplete the 

local availability of arginine and downregulate the production of 
NO via iNOS[1057]. In addition, among antiinflammatory cytokines 
produced by macrophages, DCs, and other cells during infection 
with the microbe[1058]), IL-10 is a relatively weak inhibitor of iNOS 
levels while TGF-β1 negatively regulates iNOS concentrations 
through multiple mechanisms[1059]. Moreover, TGF-β1 generation 
in the patients with RA plus toxoplasmosis was found to be 
significantly increased compared to both individuals with RA alone 
and controls[1060]. This causes disturbances in the homeostasis of 
NO generation during host-parasite interaction, especially that 
the pathogen inhibits also NO production induced by different 
macrophage-activating stimuli, as well as facilitates parasite 
replication in activated macrophages[565], and inducible NO is 
essential for host control of persistent infection with the intracellular 
pathogen[880].
   Natural microchimerism existing not only in the blood of patients 
with RA but also in the rheumatic nodules[1061,1062], may play 
an important role in both dissemination of the parasite and the 
pathogenesis of RA. Also, an association of acute infection by the 
parasite with onset of Still’s disease, a juvenile form of RA, has been 
reported[109]. Recently, Al Kalaby et al[1063] found that toxoplasmosis 
positive aborted women were about 4.4 folds more likely to have RA 
(OR CI 95% = 4.4, 1.4-13.8, p ≤ 0.01). Eaton et al[1064] demonstrated 
also an inverse correlation between the prevalence of schizophrenia 
and RA, the finding confirmed later on by Oken & Schulzer[1065] data 
obtained from 1323 inpatients with schizophrenia. It was suggested 
that these two clinical entities share a common infectious and/or 
immune etiology[1066], and recently, a seroprevalence of anti-T. gondii 
IgG antibodies in patients with schizophrenia has been reported[502]. 
    Mousa et al[108] treated 29 toxoplasmosis antibody-positive RA 
individuals with pyrimethamine and sulfadoxine, with some receiving 
spiramycin in addition, and found that clinical manifestations of RA 
markedly improved in 16 of them. Natural autoantibodies may also 
have a therapeutic potential because they exerted a protective effect in 
ADs, involving both cellular and humoral processes[1045,1047]. Natural 
autoantibodies and some immunological mediators were also found 
in the sera of healthy individuals[378,1066,1067], and they were polyactive, 
mostly of IgM isotype and reacted with both self and non-self 
antigens. For example, RF was reported to be protective against the 
development of lupus nephritis, and a highly significant correlation 
was found between the presence of IgM-RF and the absence of 
kidney disease in the patients with SLE[1068]. It is interesting to note 
that coffee consumption seems to increase the risk of developing RA 
and type 1 diabetes mellitus. On the other hand, the beverage may 
exert a protective role against MS, ulcerative colitis, and primary 
sclerosing cholangitis[1069].
    Rheumatoid meningitis (RM) is often observed in well-controlled 
RA patients[1070,1071] or even manifested as the first symptom of 
the disease[1072-1074], suggesting an ongoing intense inflammatory 
process in the CNS. On the other hand, Importantly, T. gondii share 
idiopathic intracranial hypertension associated with headaches and 
aseptic meningitis may be caused by reactivation of latent cerebral 
toxoplasmosis because T. gondii frequently infects plexus choroideus 
in the brain resulting in its inflammation and overproduction of 
cerebrospinal fluid[1075-1077]. Nardone et al[1078] presented a patient with 
RA history lasting for 24 years who developed headaches as well 
as gait and speech disturbances after treatment with adalimumab, 
an anti-TNF-α therapeutic agent. The authors suggested that 
this TNF-α inhibitor represent risk of development of cerebral 
toxoplasmosis. Lassoued et al[1079] also reported two patients 
who developed toxoplasmic retinochorioretinitis after antitumor 
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Table 41 Selected ubiquitous cathepsins B, C and L and their functions in the immune system (acc. to Conus & Simon [1101]; with own modification).

Cathepsin Function Involvement in disease

Cath B

Early neutrophil, T and B cell apoptosis, Inflammatory disorders

TLRs signaling and TNF-α production, Alzheimer’s disease

Selectors for peptide-MHC II complexes Cancer

Cath C Activation of granzymes A and B in NK cells and T lymphocytes Inflammatory disorders

Cath L

TLRs signaling, Rheumatoid arthritis

Selectors for peptide-MHC II complexes,  Atherosclerosis

NKT and CD4 T cells production, Thymic pathology

Neuronal cell death and osteoclastic bone degradation Autoimmune diabetesa 

Cancer
MHC II, major histocompatibility class II compartments; NKT, natural killer T lymphocytes; TLR, toll-like receptors. Granzymes A and B are neutral serine 
proteases expressed in the granules of NK cells and activated cytotoxic T lymphocytes (i.e. CD8+ T cells). aCath L activity is essential for the development 
and progression of CD8+ T cell-mediated murine autoimmune type 1 diabetes [1102, 1103].

Table 42 Proteases characterized in T. gondii, their classes, function and localization (acc. to Li et al [1088]; with own modification).

Protease class Specific protease Protease function and localization Refs

Cysteine TgCPB/Toxopain-1 Invasion; rhoptry protein processing [1108,1109]

TgCPCs Growth and replication; cleavage of dipeptides from N-terminal in cytosol [1110]

TgCPL Invasion; maturation of micronemal proteins; localized to the vacuolar compartment [1111]

Metalloproteinase Toxolysin 4 Invasion/egress; localized to the micronemes [1112]

Serine TgSUB1 Invasion, maturation of rhoptry proteins; host cell attachment; localized to the micronemes [1113]

TgSUB2 Invasion; maturation of rhoptry proteins; localized to the rhoptries [1114]

TgROM2,4,5 Surface protein sheddase; localized to tachyzoite plasma membrane [1115]

necrosis factor treatment in RA. It seems therefore that treatment 
regimens with TNF-α antagonists (infliximab, etanercept) in RA and 
spondyloarthropathies may cause reactivation of chronic cerebral 
toxoplasmosis. These biologic agents exert both anti-TNF-α- and 
anti-IFN-g-related inhibitory effects, which favor T. gondii replication 
in the brain and/or other tissues, thus triggering development 
of multiple adverse CNS and/or ophthalmologic abnormalities 
characteristic for chronic infection with the parasite[117,1080-1086]. 

T. gondii cysteine cathepsins may contribute to triggering, 
development, and/or progression of RA 
Juvenile idiopathic arthritis (JIA) is the most common childhood 
autoimmune rheumatic disease. Taubert et al[1087] characterized the 
expression levels of cathepsins (Cath) B, D, and L in JIA and found 
that expression of Cath B, D and L was on comparable levels in the 
synovectomy tissue of 16 hemophilic arthropathy and 12 RA patients. 
The following graduation of expression was established: Cath D > 
Cath L > Cath B. The authors suggested that this may play a similarly 
important role in destroying synovial tissue and cartilage matrix in 
the course of these clinical entities[1087]. 
    Cathepsins contribute to several pathophysiological processes 
including these characteristic for RA[1088], such as antigen presentation 
in the immune system [1089,1090], neuropeptide and hormone 
processing[1091], and collagen turnover in bone and cartilage[1092]. 
In patients with RA or osteoarthritis, the Cath B, L, K, and S were 
expressed in joint cartilage and synovial cells, as well as infiltrating 
immune cells[1089], thus contributing to cartilage destruction and 
immune response[1093]. Glycosaminoglycans predominantly expressed 
in bone and cartilage (chondroitin, keratan sulphates) potentially 
inhibit the collagenase activity of Cath L at 37oC, they stabilize 
the cathepsins at neutral pH (as demonstrated for Cath B), and 
chondroitin and dermatan suphates were shown to dramatically 
increase the collagenolytic activities of Cath L and Cath S[1094]. 
    Cathepsins are expressed in macrophages, vascular endothelial 
and smooth muscle cells of atherosclerotic lesions[1095-1097]. In patients 

with RA and osteoarthritis, the cathepsins are expressed in joint 
cartilage and synovial cells and in infiltrating immune cells[1089]. 
They contribute to cartilage destruction and modulate inflammation, 
immune responses, cellular functions, and are involved in 
development of several diseases[1098-1100] (Table 41). 
    T. gondii cathepsin proteases act classically as lysosomal 
hydrolases that digest endogenous and exogenous endocytosed 
polypeptides[1104,1105]. They function in the parasite microneme 
and rhoptry protein maturation, host cell invasion, replication, 
and nutrient acquisition[1104,1106]. Cathepsins can also play a role in 
degradation of matrix proteins, antigen presentation, TNF-α-induced 
apoptosis, spermatogenesis, and tumor invasion[1104,1107]. T. gondii 
specific protease function and localization are presented in Table 
42[1088]. 
    Cysteine proteases play a major role in invasion and intracellular 
survival of a number of pathogenic parasites. Que et al[1108] showed 
that the T. gondii Cath B (toxopain-1) was localized to rhoptries 
(secretory organelles) and was critical for parasite invasion and 
rhoptry protein processing. This cathepsin was found to be essential 
for infection in a chicken model of congenital toxoplasmosis[1109]. 
Furthermore, Cath B suppresses proliferation of peripheral 
blood mononuclear cells[1104] and therefore participates in the 
immunosuppressive activity of the parasite proteases finally leading 
to impairment of the host immune defense.
    Interestingly, cigarette smoking infection of vascular endothelial 
cells by T. gondii tachyzoites may be an important source of 
cathepsins because the parasite genome expresses five members of 
the cathepsin proteases, including one Cath L-like (TgCPL), one 
Cath B-like (TgCPB), and three Cath C-like (TgCPC1, 2, and 3) 
proteases[1104,1116] (Table 43).
    Dou et al[1117] showed that T. gondii tachyzoites ingested host 
cytosolic proteins and digested them using Cath L (one of the most 
potent mammalian collagenases and elastases expressed in most 
tissues and cell types, regulated by proinflammatory cytokines) and 
other proteases within its endolysosomal system. Both virulent type 



I and avirulent type II strain parasites ingested and digested host-
derived proteins, indicating that the pathway is not restricted only 
to highly virulent strains. Larson et al[1118] showed that TgCPL was 
associated with a discrete vesicular structure in the apical region of 
extracellular parasites but was found in multiple puncts throughout 
the cytoplasm of intracellular replicating parasites.
    Cath Cs are critical to T. gondii growth and differentiation[1106]. 
T. gondii Cath Cs were required for peptide degradation in the 
parasitophorous vacuole (PV), as the degradation of the marker 
protein, E. coli b-lactamase, secreted into the PV of transgenic 
tachyzoites was completely inhibited by the Cath C inhibitor. 
TgCPC1 was the most highly expressed cathepsin mRNA in 
tachyzoites, and three cathepsins, TgCPC1, TgCPC2, and TgCPB, 
were undetectable in in vivo bradyzoites[1106].
    In summary, chronic T. gondii infection seems to play an important 
role in triggering and development of RA, osteoarthritis, occurrence 
of lesions in atherosclerosis, and other entities. Reactivation of 
cerebral toxoplasmosis together with neurological/ophthalmologic 
disorders observed in the patients treated with TNF blockers strongly 
support this suggestion. Infection of vascular endothelial cells by T. 
gondii tachyzoites may become an important source of additional 
cathepsins supply besides of these physiologically present in the host 
cells, because they expresses five members of the cysteine cathepsin 
proteases. 

IMPORTANT ROLE OF LEPTIN AND OBESITY 
IN TRIGGERING AND MAINTENANCE OF 
INFLAMMATION AND AUTOIMMUNITY
T. gondii infection causes a significant increase in serum leptin 
levels in both animals and humans, and there is a significant 
positive association between the parasite seropositivity and 
obesity 
ADs
Elevated circulating leptin levels makes obese individuals more 
susceptible to developing several ADs including SLE, RA, 
MS, psoriasis, autoimmune diabetes, autoimmune thyroiditis, 
and inflammatory bowel disease [1119,1120]. Matarese et al[1121] 
suggested that high serum leptin concentrations may be either a 
contributing factor[1122,1123] or a marker of disease activity[1124,1125]. 
Importantly, a surge of serum leptin preceded onset of autoimmune 
encephalomyelitis and correlated with development of pathogenic T 
cell responses[1126]. Moreover, leptin accelerated autoimmune diabetes 
in female NOD mice[1127].
    Leptin, the product of obese gene, is an adipocytokine 
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Table 43 Features of T. gondii  cathepsin-like proteases (acc. to Dou & Carruthers, [1104]; with own modification).

Cathepsin protease Mature molecular weight (kDa) Activity T. gondii stage expression

TgCPL 30 endopeptidase tachyzoite/bradyzoite

TgCPB 28 endo/exopeptidase tachyzoite/bradyzoite

TgCPC1 35 exopeptidase tachyzoite

TgCPC2 44 exopeptidase tachyzoite

TgCPC3 32 exopeptidase sporozoite

Table 44 Body weight and plasma leptin concentrations in rats intraperitoneally infected with T. gondii (acc. to Baltaci & Mogulkoc [1156], with own 
modification).
Study group Body weight before the study (g) Body weight after four weeks (g) Plasma leptin levels (ng/mL)

Control rats (n = 10) 266.00 ± 32.81 270.50 ± 33.70 4.09 ± 1.15

Infected animals (n = 10) 263.50 ± 44.16 269.50 ± 42.78 7.53 ± 1.55a

Results represent mean ± SD. aStatistically significant result (p < 0.01). 

that promotes activation of and phagocytosis by monocytes/ 
macrophages and their secretion of proinflammatory cytokines, NO, 
cyclooxygenase 2, and leukotriene B4[1128-1130]. Moreover, leptin can 
induce chemotaxis of neutrophils and the release of oxygen radicals, 
such as hydrogen peroxide and superoxide anion[1131,1132]. Leptin 
receptors were found also on the endothelial cells[1133], vascular 
smooth muscle cells[1134], and macrophages and foam cells[1135]. 
    Structurally, leptin resembles cytokine IL-2 in particular and is 
a crucial T-cell growth factor[1136]. The levels of this biofactor were 
increased in infections and autoimmune disorders, or after exposure 
to inflammatory stimuli such as LPS, TNF-α, and IL-1[1127]. Leptin 
displayed proinflammatory properties that were most evident in 
inflammation and autoimmunity processes[1119,1137-1139]. In cultured 
T-lymphocytes, leptin stimulation caused shift toward TH1 population 
with increased production of proinflammatory cytokines like TNF-α, 
IFN-γ, IL-2 and IL-18, and decreased generation of TH2 cytokines 
IL4, IL-5 and IL-18[1140,1141]. 
    Leptin can affect thymic homeostasis and the secretion of 
cytokines IL-1 and TNF-α[1120], enhanced GM-CSF production in 
peritoneal macrophages[1142,1143] and mediated both proliferative and 
antiapoptotic activities in a variety of cell types, including T cells[1144] 
and monocytes[1145]. In human umbilical vein endothelial cells 
(HUVECs), human adult vein endothelial cells (HAVECs) and human 
microvascular endothelial cells (HMECs) leptin concentration-
dependently (10-50 nM/L) reduced apoptosis by 20%, and increased 
expression of the apoptosis inhibitor bcl-2 by 55% (both p < or = 
0.05)[1146]. Leptin enhanced availability of apoptotic cell-derived self-
antigen in SLE[1147]; interestingly, there were also disturbances of 
apoptotic cell clearance in SLE[1148]. In lupus mice, leptin via cAMP, 
promoted the phagocytosis of apoptotic cell-derived self-antigen(s) 
by macrophages and subsequent proliferation of T cells reactive to 
apoptotic antigenic debris[1147]. 
    Leptin contributes also to atherosclerosis and to the increased 
risk of cardiovascular disease in obese individuals because 
increased human plasma concentrations of the cytokine have been 
independently associated with the common carotid artery intima-
media thickness, an early marker of atherosclerosis[1134,1149,1150]. In 
human atherosclerotic lesions, leptin mediated atherosclerosis in 
vitro and in vivo, and induced (at doses 10-40 ng/mL) proliferation 
of the HUVECs and elevation of matrix metalloproteinases 
(MMPs) MMP-2 and MMP-9 expression, in a dose-dependent 
manner[1151]. Leptin accelerated cholesteryl ester accumulation in 
human monocyte-derived macrophages by increasing acyl-CoA: 
cholesterol acyltransferase 1 expression and cholesterol efflux from 
these cells[1152], thus probably being responsible at least in part for 
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Table 46 Olfactory bulb volumes in patients with schizophrenia, first-
degree relatives, and healthy controls (acc. to Turetsky et al [1183];with  
own modification).

Group

Volumes (mm3)

Left bulb Right bulb

Mean SD Mean SD

Patients  (n = 11) 70.82a 11.77 70.18b 14.11

Control individuals (n = 20) 81.62 16.91 85.97 13.75

Relatives (n = 19) 83.51 17.96 75.41c 13.56
aSignificant difference between patients and relatives (MANOVA, p < 0.05, 
two-tailed). bSignificant difference between patients and controls (p < 0.05). 
cSignificant difference between relatives and controls (p < 0.05).

Table 47 Preferential localization of T. gondii ME49 strain cysts in different 
regions of murine brain at 2 and 6 months post inoculation (acc. to Melzer 
et al [1214]; with own modification.

Brain region Two months 
after inoculation a

Six months 
after inoculation b

Cerebral cortex 34 57

Hippocampus 10 25

Thalamus 5 -

Hypothalamus 6 3

Amygdala 25 9

Caudate putamen 12 6

Cerebellum 8 -
a Total number of cysts observed = 67. b Total number of cysts observed = 32.

Table 45 Serum proinflammatory cytokines and leptic concentrations in 
prepubertal obese children compared with controls (acc. to Aygun et al 
[1158]; with own modification).
Parameter Obese children Controls P value

Leptin (ng/mL) 19.9 ± 7.4 7.9 ± 5.1 < 0.001

IL-1β (pg/mL) 33 ± 8.9 3.6 ± 1 < 0.001

IL-2 (U/L) 0.4 ± 0.1 0.9 ± 0.1 < 0.01

IL-6 (pg/mL) 45.2 ± 11.8 13.1 ± 3.9 < 0.001

TNF-α (pg/mL) 9.2 ± 2.3 3.9 ± 1 < 0.001

E-selectine (ng/mL) 78 ± 38 59 ± 29 < 0.01

hsCRP (mg/L) 4.1 ± 4.8 0.9 ± 1.5 < 0.001

Results are mean ± SD; CRP, C-reactive protein; hs, high-sensitivity. 

development of foam cells during T. gondii infection[526]. Finally, it 
must be noted that ADs are usually more prevalent in females[1153], 
and females are relatively hyperleptinemic, whereas males are 
relatively hypoleptinemic[1154,1155].
   T. gondii infection. Baltaci & Mogulkoc[1156] established that rats 
infected with T. gondii had significantly increased plasma leptin 
levels four weeks after the intraperitoneal injection of live parasites 
as compared with control animals (Table 44). 
    Recently, Reeves et al[918] reported a significant positive association 
between T gondii seropositivity and obesity (p = 0.01). It was found 
that these obese individuals had a markedly higher T. gondii IgG 
titers compared to normal weight participants. Van Dielen et al[1157] 
demonstrated that in severely obese individuals increased leptin 
levels correlated with increased concentrations of inflammatory 
markers. Similarly, Aygun et al[1158] showed that obese prepubertal 
children had markedly elevated mean serum leptin concentration, and 
significantly increased serum IL-1β, IL-6, and TNF-α levels (Table 
45). Other investigators demonstrated also increased serum NO 
levels in overweight/obese women[1159], and significant amounts of 
iNOS and IL-6 expression in adipose tissue macrophages[1160]. Nb. it 
should be noted that sustained TNF production by the central nervous 
system infiltrating macrophages promoted progressive autoimmune 
encephalomyelitis[1161], and IL-6 levels were elevated in chronic 
inflammatory conditions, such as RA, and some other ADs[1162-1164]. 
    It must be noted that many authors suggested a strong link between 
obesity (“the low grade inflammation state”), adipokines and several 
immune mediated ADs, being obesity as not a passive bystander[1165]. 
Because latent chronic T. gondii infection has a high prevalence 
worldwide, and 23% of the European adult population are now 
obese, while approximately 57% of the world’s adult population is 
projected to be obese or overweight by 2030[1166], health disturbances 
associated with inflammation and autoimmunity due to chronic 
infection with the parasite may be a serious global public health 
hazard in development of ADs. 

OLFACTORY DYSFUNCTION WITH IMPAIRED 
SENSE OF SMELL FREQUENTLY REPORTED 
IN PATIENTS WITH ADs, NEURODEGENRA-
TIVE DISEASES, AND DEPRESSION MAY BE 
CAUSED BY LATENT CHRONIC T. GONDII 
INFECTION
ADs
The olfactory route for infectious and/or toxic agents may initiate 
or exacerbate autoimmune pathology, such as for example 
autoimmune hepatitis, or neuroinflammation, and accounts for 
common manifestations in a wide range of ADs and neuropsychiatric 
disorders[170,1167-1173]. The link between autoimmunity and impaired 
smell has been demonstrated in patients with several ADs including 
SLE, multiple sclerosis, Sjögren’s syndrome, schizophrenia, 
diabetes mellitus, ASD, Wegener’s granulomatosis, myastenia 
gravis, neuromyelitis optica, hereditary angioedema, and 
polydermatomyositis[1174-1187], and in neurodegenerative diseases, 
such as Alzheimer’s disease, Parkinson’s disease, and Down 
syndrome[414,1188-1190]. In a recent review, Chen et al[1191] reported 
that there were significant associations between maternal ADs 
developed during pregnancy or maternal thyroid disease and the 
risk of ASD in offspring. Perricone et al[1174] and others[1192] found 
that patients with SLE and disturbances in their olfactory functions 

had neuropsychiatric manifestations of the disease, and otherwise 
Katzav et al[1193] in mice demonstrated that injection of human lupus 
anti-P ribosomal autoantibodies to the brain ventricles induced 
defect in smell capability and depression-like behaviour. Recently, 
Lucassen et al[1175] reviewed available literature data and established 
that the prevalence of olfactory dysfunction is significant in the MSc 
population, ranging from 20% to 45%. They also demonstrated the 
correlations between olfactory dysfunction and cognitive disturbances 
and depression in these patients. 
    Several authors showed that many neurodegenerative diseases 
are first demonstrable in the olfactory system, with loss of the 
sense of smell up to 10 years before the onset of cognitive or motor 
dysfunction[1172]. Olfactory dysfunction may affect up to 90% of 
early-stage Parkinson’s disease cases[1194]. Intriguingly, several studies 
reported that cigarette smoking may have a protective effect in this 
clinical entity because it was associated with a better sense of smell 
in such patients[1195-1197]. In addition, it was found that patients with 
Parkinson’s disease have multi-organ parasympathetic dysautonomia 
involving pupillary, cardiovascular, and gastrointestinal systems, with 
not entirely clear underlying pathophysiology[1198,1199]. The beneficial 
effects of smoking in this entity may be at least in part explained 
by the following facts: (a) autonomic dysfunctions, characterized 
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by lower vagal and higher sympathetic tone, and cholinergic 
modalities acting through vagus nerve and/or α7 subunit-containing 
nicotinic acetylcholine receptor-mediated mechanisms have been 
shown to suppress excessive inflammation in several experimental 
models of disease by inhibiting overproduction of TNF and other 
proinflammatory cytokines[1200-1203]; and (b) possible chronic T. gondii 
infection in patients with Parkinson’s disease exerted damaging 
effects on the peripheral autonomic system, especially enteric nervous 
system of the gastrointestinal tract, found in experimental animals 
and patients with autism, inflammatory bowel disease, Leśniowski-
Crohn’s disease, and other clinical entities[120,1204-1207]. 

T. gondii infection
Xiao et al[1208] showed that in male mice, infection with the parasite 
led mainly to modulation of genes associated with olfactory 
function, such as downregulation of the number of olfactory 
receptors and dopamine receptor D4. However, general olfactory 
tests and sensorimotor gating were normal in both male and female 
infection[1208,1209]. The discrepancy between findings in rodents and 
impaired sense of smell reported in patients with Alzheimer’s disease, 
as well as in the individuals with various ADs suffering from chronic 
T. gondii infection, may be at least partly explained by a much more 
developed rhinencephalon in animals (lobus olfactorius) than in 
humans (bulbus olfactorius), including morphometric parameters[1210], 
therefore to a considerably smaller extent subjected to the olfactory 
tissue destruction[1211]. It must be emphasized that low olfactory bulb 
volumes have been found in patients with schizophrenia (left and 
right bulb) and their first-degree relatives (right bulb) as compared 
with healthy participants[1183] (Table 46). In another study, the 
significant hippocampal atrophy has been also reported in 43.9% of 
150 patients with SLE, with progression of reduction in right and left 
hippocampal volumes related to disease duration (p < 0.001)[1212]. 
Moreover, patients with neuropsychiatric SLE had damage of the 
amygdala[1213], and It must be emphasized that selective involvement 
of these two brain regions were preferentially and persistently 
invaded by the parasite (Table 47)[1214]. 
    In patients with Parkinson’s disease, olfactory loss was considered 
as a marked early symptom that correlated with the progression of 
the disease[1215], and parkinsonian symptoms have been observed 
as an initial manifestation in a Japanese patient with acquired 
immunodeficiency syndrome and T. gondii infection[1216]. Olfactory 
dysfunction has been also reported in HIV-infected and AIDS 
individuals[1217,1918], in patients with Alzheimer’s disease[1219], in 
individuals with Down syndrome[1190], in subjects with MSc[1175,1185], 
in participants with systemic sclerosis (SSc)[1220,1221], in patients 
with SLE[1192,1193,1221], in patients with schizophrenia[1184] and their 
relatives[1220,1222], and during several pregnancies[1223], i.e. the 
entities with markedly increased serum anti-T. gondii IgG antibody 
levels compared with healthy controls [97,99,141,1204-1207,1224-1227]. 
Furthermore, the above-mentioned brain regions (Table 47) were 
consistently more frequently infected than other sites in animals 
with toxoplasmosis[1214,1228,1229]. Finally, it seems that damage of 
the olfactory system is at least in part responsible for development 
of depression[1230,1231] because it was found that T. gondii infection 
worsened mood in pregnant women[992], female veterans[1232], 
older persons[33,1233], patients with SSc[98,99], and individuals with 
schizophrenia[1234]. Higher incidence of depression preceded also the 
onset of Parkinson’s disease[1235], and the olfactory bulbectomized rat 
is usually serving as a model of depression[1236]. 
    In summary, damage of the olfactory system by chronic latent 
T. gondii infection may affect olfactory bulb volume and various 

olfactory functions, being therefore responsible for the smell 
impairment in patients with several ADs and/or neuropsychiatric 
disorders. It must be emphasized that in rats infected with the parasite, 
the most remarkable change in smell function was manifested by 
their fatal attraction to cat odors (“playing cat and mouse”) despite 
genetically evolved anti-predator inner fear[1209,1237-1240]. Finally, it 
seems that damage of the olfactory system may be at least in part 
responsible for development of depression in several ADs, and T. 
gondii may be a potential common significant environmental risk 
factor inducing many ADs and neurodegenerative diseases, as well 
as depression, the autoimmune disease often associated with these 
clinical entities[984,991,1240-1246]. 

H. PYLORI INFECTION AND DEVELOPMENT 
OF ADs
Surprisingly many similarities in the worldwide prevalence and 
molecular immune pathomechanisms of the bacterium and the 
parasite T. gondii
H. pylori is one of the most common chronic infectious agents which 
typically causes chronic gastritis and peptic ulcer disease in children 
and adults. This Gram-negative bacteria colonizes gastric epithelial 
cells and the gastric mucosal layer in 32.7-46.9% of the population in 
developed countries (Northern America, Western Europe) and 54.7-
87.7% in developing countries (Africa, Latin America, Asia), for 
an estimated 4.4 billion people worldwide in 2015[1247,1248]. Among 
individual countries, even in Switzerland, which had the lowest 
reported H. pylori prevalence (18.9%), there were still approximately 
1.6 million infected persons[1248]. In the U.S., the bacterium has a 
seroprevalence of approximately 37.1%[1248]. It was estimated that the 
rate of seropositivity for the bacterium increased from approximately 
40% at age 20 yrs, to about 80% by the age of 70 yrs (p = 4.5 x 10-24)
[1249]. The H. pylori recurrence rate was inversely related to the human 
development index (HDI) (3.1% to 10.9% depending on HDI) and 
directly related to its prevalence[1250].
    H. pylori infection has been implicated in the development of 
several both organ-specific and non-organ-specific ADs[1251-1253], 
including autoimmune gastritis, RA[1254], Sjögren’s syndrome[1255], 
primary biliary cirrhosis[129,1256], Graves’ disease[1257], psoriasis[1258,1259], 
immune thrombocytopenia purpura[1260,1261], and neuromyelitis 
optica[1262]. H. cinaedi, an emerging enterohepatic pathogen, 
was suggested to have a close association with development of 
atherosclerosis in infected individuals through involving macrophage 
driven marked proinflammatory responses[1263,1264], similarly as 
T. gondii[525]. Moreover, H. pylori is associated with an increased 
incidence of diabetes, especially in older individuals[1265,1266]. T. gondii 
may also be responsible for the development of this disease[102], and 
the anti-Toxoplasma seropositivity is increasing with age[33], similarly 
as H. pylori[1249].
    Infection with H. pylori causes primarily a TH1 type of T-cell 
response, resulting in the generation of monocyte-macrophage 
proinflammatory cytokines IL-1β, IL-6, IL-8, TNF-α, and IFN-γ 
that promotes gastric mucosal inflammation[1251,1267,1268]. Yamanishi 
et al[1254] demonstrated that H. pylori urease may be the predominant 
trigger that initiate autoimmune processes. The interaction between 
H. pylori and B-lymphocytes leads to uncontrolled growth and 
proliferation of predominantly B1 cells that produce polyreactive/
autoreactive IgM and IgG3 antibodies[1269]. Chronic infection with the 
bacterium results in stimulation and increased survival of this subset 
of B lymphocytes[1254]. The antibodies produced do not however 
result in clearance of the pathogen and may therefore be involved 
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for example in the production of a major autoreactive antibodies 
against the gastric H+,K+-ATPase, a marked indicator of body mucosa 
atrophy in chronic H. pylori gastritis[1270]. Several autoantibodies, 
including IgM rheumatoid factor, anti-single stranded DNA antibody 
and anti-phosphatidylcholine antibodies, were found to be generated 
by B cells after their activation by the bacterium components, 
particularly urease[1254].
    Takenaka et al[1271] suggested that H. pylori HSP60 activates NF-
κB and induces IL-8 production through TLR-triggered pathways 
in gastric epithelial cells[1272,1273]. Kawahara et al[1274] reported that 
humoral immune responses to HSP60 are closely associated with 
gastric inflammation and play a role in the pathogenesis of mucosa-
associated lymphoid tissue lymphoma[1275]. Chronic antigenic 
stimulation by latent H. pylori or T. gondii products may also be 
responsible for B-cell lymphomagenesis in infection-associated 
development of non-Hodgkin lymphoma[1269,1276-1280]. It must be 
noted that some ADs, such as RA, Sjögren’s syndrome, SLE, 
and celiac disease are at increased risk of developing large B cell 
lymphomas[1281,1282], and interestingly, in Sjögren’s syndrome low 
levels of vitamin D have also been linked with the occurrence of 
lymphoma[1283].
    Toll-like receptors (TLR) are important for the recognition of 
exogenous pathogen-associated molecular patterns and binding 
with damage-associated molecular patterns produced by tissue 
damage or cells apoptosis. These actions result in stimulation of 
proinflammatory activity directed against invading microorganisms. 

Cell surface TRL2 and TRL4 play an essential role in the 
development of several ADs, including RA, SLE, systemic sclerosis, 
Sjogren’s syndrome, psoriasis, MS, and autoimmune diabetes[1284]. 
Smith et al[1285] demonstrated that TLR2 and TLR5 are required 
for H. pylori-induced NF-κB activation and chemokine expression 
by gastric epithelial cells. Further study of Uno et al[1286] showed 
that TLR2 induced through TLR4 signaling initiated by H. pylori 
cooperatively amplified iNOS induction in gastric epithelial cells. 
It must be noted that TRL2 and TRL4 have also been activated by 
glycosylphosphatidylinositol derived from T. gondii[89], and TRL2 
appeared important for protective immunity against the pathogen[1287]. 
It was suggested that these two biomolecules regulate the balance 
between TH1 (to eliminate pathogen) and TH2 (to protect host from a 
robust uncontrolled inflammatory response) type of innate immune 
responses essential for the survival of the host[1288].
    H. pylori causes a chronic gastritis, ulcers, and gastric cancer 
at least in part by chronic inflammation and impaired host 
innate immunity, including inhibition of type TH1 response 
development[1289,1290]. Following chronic infection with the bacteria, 
PD-L1 was upregulated on DCs and gastric epithelial cells (GECs], 
capable of T cell activation[1289,1290]. In vitro, PD-L1hi GECs had 
reduced capacity to induce proliferation in CD4 T cells, which 
was reversed by blocking PD-L1[1289]. Furthermore, it was found 
that gastric CD4 T cells obtained during gastric biopsies from H. 
pylori-infected patients had higher levels of PD-1 expression, which 
correlated with density of the pathogen[1291], and high PD-1 expression 
is a hallmark of dysfunctional T cell found in chronic microbial 
infections[1292]. Higher PD-L1 expression has also been demonstrated 
on T cells and a wide range of non-hematopoietic cell types including 
DCs during chronic T. gondii and viral infections[588,1293]. 
    Ek et al[1294] showed that T. gondii seropositivity was linked to 
elevated IgE, proinflammatory TH1-IgG2, IgG3, and IgG4 responses 
to a concomitant infection with H. pylori, i.e. individuals with high 
T. gondii titers had reduced proinflammatory TH1-IgG2, IgG3, and 
IgG4 responses to H. pylori. Similar inverse TH1 and TH2 cytokine 

interaction has been reported between H. pylori infection and atopy, 
although this counteractive immune balance did not protect against 
atopic diseases[1295]. Interestingly, Cicconi et al[1296] reported a case 
of disappearance of antiphospholipid antibodies syndrome after H. 
pylori eradication. Critical analysis of the data presented in this letter 
to the editor of The American Journal of Medicine may however 
suggest that not only this pathogen was responsible for the clinical 
symptoms and laboratory abnormalities as well as for the final 
improvement in the patient’s state of health, but the main microbe 
in charge was probably latent T. gondii infection. To support this 
opinion it must be noted that the hospitalized 33-yrs-old women 
had left-sided hemiparesthesias associated with episodic weakness 
of the upper extremities, history of Raynaud’s phenomenon, and 
suffered from migraine with aura. After treatment with nimodipine, 
and following combined therapy with clarithromycin, metronidazole 
and omeprazole for one week there was a gradual resolution of 
the neurologic symptoms, migraine markedly improved, and 
the Raynaud’s phenomenon disappeared. Although her serum 
toxoplasma markers were found to be negative (the majority of 
laboratory tests for T. gondii are however not fully specific and 
sensitive[967]), it must be noted that all these drugs are known to 
exert antitoxoplasmatic effects (nimodipine- a plasma membrane 
calcium channels blocker acts via disruption of Ca2+ homeostasis in 
parasites[1297,1298], and autophagy modulation[1299]; omeprazol causes 
significant depolarization of the T. gondii PV membrane[1300]; and 
azithromycin and metronidazole disturb purine and DNA synthesis of 
the parasite[1301]). Moreover, T. gondii may be the cause of migraine 
and neurological disturbances reported in this patient[1077,1302]. Thus, 
it seems that T. gondii and H. pylori coinfection should be taken into 
consideration in the development of all these clinical and laboratory 
disturbances. 
    Finally, a large sample of 1785 young and middle-aged men and 
women seropositive for both H. pylori and T. gondii appeared to be 
more susceptible to development of cognitive function deficits than 
were participants seropositive for either H. pylori or toxoplasmosis 
alone[1303]. It must however be noted that these two infections are 
usually associated with development of iron deficiency[1304], and this 
abnormality may at least in part explain possible pathomechanism of 
the cognition deficits.

MUTUALLY OVERLAPPING IMMUNOSUP-
PRESIVE EFFECTS CAUSED BY CONCOMI-
TANT LATENT CHRONIC T. GONDII AND 
VIRAL INFECTIONS PLAY A KEY ROLE IN 
DEVELOPMENT AND PERSISTENCE OF SEV-
ERAL ADs 
In the years 1988-1994, mean total seroprevalence estimates and 
95% confidence intervals of six infectious diseases among adults in 
the U.S. were the following: HAV 37.4% (35.2-39.8%), H. pylori 
32.7 (29.9-35.8), T. gondii 25.4 (23.9-27.0), HSV-2 24.0 (22.0-
26.1), HBV 5.6 (4.8-6.5), and HCV 2.4% (2.0-3.1%)[1305]. Recently, 
Rubicz et al[1249] studied seroprevalence of 13 common pathogens 
in 1227 Mexican Americans from San Antonio, TX, and found that 
the overall prevalence rates for HSV-1, HHV-6, CMV, EBV, HSV-
2, HAV, H. pylori, and T. gondii were 82%, 82, 55, 46, 22%, 73, 
57, and 9%, respectively. These data support general opinion that 
usually burden of infections is responsible for the induction of many 
ADs[1306].
    CMV infection. Human CMV is a widespread pathogen 
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(approximately 60-100% of the adult population is infected with 
the virus[1307]) that causes severe disease in patients with immature 
or impaired immune system, and establishes lifelong latency with 
recurrent reactivations in all infected hosts[1307,1308]. This common 
pathogen is spread through contact with infected bodily fluids, such 
as urine, saliva, semen, breast milk[1309], and in immunocompetent 
individuals is associated with development of mononucleosis, 
Guillain-Barre syndrome, meningoencephalitis, hemolytic anemia, 
and thrombocytopenia[1308]. 
    Human CMV lytic replication in multiple tissues, the lifelong 
persistence through periods of latency and intermitting reactivation, 
the extraordinary large proteome, and extensive manipulation of 
adaptive and innate immunity make the virus a solid candidate for 
involvement in several ADs, including SLE, RA, systemic sclerosis, 
diabetes mellitus type 1, atherosclerosis, and various vasculopathies 
(especially scleroderma)[99,1310-1318]. CMV infection has been 
implicated as a trigger of vascular damage[1311] in ADs due to its 
ability to infect both endothelial and monocyte/macrophage cells, 
and upregulation of fibrogenic cytokines, such as TGF-β1, as well 
as triggering immune dysregulation[99,1319], similarly as the parasite 
T. gondii. In certain populations CMV infection causes increased 
morbidity and mortality in patients with ADs, particularly SLE[1320].
    C M V i n f e c t i o n  c a u s e s  t r a n s i e n t  b u t  s u b s t a n t i a l 
immunosuppression[1321], which in solid organ transplant recipients is 
associated with potentiation of superinfections due to various other 
pathogens[1294,1322]. Furthermore, CMV replication influence the viral 
load of other viruses, such as HCV[1323], HHV-6 and HHV-7 viruses in 
solid organ recipients[1324]. In addition, subclinical CMV viremia has 
been documented in blood donors and this may increase viral load in 
the patients with ADs requiring blood transfusion[1325].
    During the acute phase of CMV invasion several cell types can 
be infected, including endothelials cells, monocytes, macrophages, 
epithelial cells, smooth muscle cells, fibroblasts, hepatocytes, 
neuronal cells, and DCs[1326]. Interestingly, cells with high levels 
of glutathione are resistant to CMV infection[1327,1328], probably 
because glutathione is a major intracellular antioxidant[1329]. Active 
and latent CMV infections induce sustained systemic TH1 type 
proinflammatory cytokine responses via CD14 and TLR 2-dependent 
activation of NF-κB[1330,1331]. However, human CMV downregulates 
MHC expression[1332-1334] and impairs IFN-γ-induced MHC class II-
dependent antigen presentation by macrophages[1335], and infection of 
cytolytic T lymphocytes and NK cells by CMV abrogate their ability 
to kill CMV-infected targets[1336,1337]. In all age groups, latent CMV 
infection is typically accompanied by a decrease in naïve T cells and 
the simultaneous accumulation of effector T cells (Table 48)[1307,1338-

1341]. it should be noted that in healthy carriers, CMV-specific CD4+ T 
cells are continuously driven to replicative exhaustion[1342]. 
    Vescovini et al[1343] demonstrated that CMV and EBV infections 
induced quantitatively and qualitatively different CD8+ T-cell 
response in very long-term carriers, because CMV chronic infection 
was characterized by highly variable frequency and absolute number 
of CD8+ T cells specific for two differently restricted epitopes that 
in some individuals were very expanded. In addition, the majority 
of anti-CMV CD8+ T cells did not bear the CD28 molecule. On the 
other hand, EBV chronic infection seemed to be kept under control 
by a limited and stable number of circulating CD8+CD28+ T cells, 
without marked individual variations[1343]. 
    Finally, it must be noted that CMV can be reactivated by increased 
serum levels of TNF-α released during various inflammation states, 
for example, in patients with atopic dermatitis[1344], solid organs/bone 
marrow transplant recipients[1345-1347], and enhanced generation of 

Table 48 Mean percentages (± SE) of CD8+ and CD4+ T-cell subsets 
in CMV-negative and CMV-positive healthy elderly donors (acc. to 
Weinberger et al [1307]; with own modification).

T cells T-cell subsets CMV-negative 
(n = 87)

CMV-positive
(n = 164) P value

CD8+

CD28+CD45RA+ naive 25.4 ± 1.4 18.0 ± 0.9 < 0.01

CD28+CD45RA- memory 49.4 ± 1.5 33.6 ± 1.2 < 0.01

CD28- effector 25.2 ± 1.6 48.4 ± 1.4 < 0.01

CD4+

CD28+CD45RA+ naive 32.8 ± 1.5 28.0 ± 1.1 < 0.01

CD28+CD45RA- memory 66.1 ± 1.5 62.9 ± 1.1 0.09 (NS)

CD28- effector 1.1 ± 0.1 9.2 ± 0.6 < 0.01
Mean Whitney U test was used to determine P value. NS, not significant.

Table 49 Serum IgG levels of anti-infectious agents antibodies more 
prevalent in PBC compared with controls (acc. to Shapira et al [129]; with 
own modification).
Infectious agent Patients with PBC Controls P value

T. gondii (IU/mL) 53.4 ± 9.1 36.4 ± 7.6 < 0.001

EBV-EA, AI 1.7 ± 0.2 0.9 ± 0.2 < 0.0001
AI, antibody index. EBV-EA, Ebstein-Barr virus - early antigen. Results are 
given as mean ± SE. 

catecholamines during stress[1348,1349]. These actions favor persistence 
of available systemic CMV antigens in the host and development of 
ADs.
    EBV infection. Most human adults are infected with EBV and 
carry the virus without clinical symptoms[1350]. In healthy individuals, 
the reported prevalence of multiple EBV infections is believed to be 
common, but ranges broadly from 0 to 100%[1351]. 
    Primary EBV infection typically occurs during childhood without 
apparent symptoms and evolves into an asymptomatic lifelong virus 
carrying latency. Rare cases of infection in early adulthood lead to 
infectious mononucleosis, which has been linked to increased risk 
of Hodgkin’s lymphoma[1352] and the onset of RA, SLE[1353], primary 
Sjögren’s syndrome[1354,1355], MS[1356,1357], autoimmune thyroiditis[1358], 
and primary biliary cirrhosis (PBC)[129] (Table 49). 
    Anti-EBV-EA antibodies concentrations positively correlated with 
anti-T. gondii antibody levels in those patients (Spearman correlation 
r = 0.35, p < 0.01). A similar positive correlation was detected in 
PBC patients between anti-EBV-EA and CMV antibodies levels (r 
= 0.32, p < 0.01), which may suggest a secondary origin of their 
generation as compared with the primary and the same T. gondii-
related IL-21 cytokine stimulus intensity required to control chronic 
viral infection[951,953,1359].
    EBV can infect and activate both neutrophils and monocytes, 
and modulates several of their biologic functions, which results in 
triggering the release of many proinflammatory mediators[1360] (Table 
50). 
    It must be noted that phagocytosis is directly involved in the 
clearance of invading pathogens and also represents a crucial step 
towards the presentation of specific antigens via the MHC class II 
pathway. EBV sigificantly reduced the phagocytic activity of primary 
phagocytes[1362], most likely through the impairment of protein kinase 
C activity[1363,1364]. 
    Cytotoxic CD8 lymphocytes (CTLs) play a pivotal role in the 
control of viral infection and activated CTLs however often lose 
effector function during chronic infection. It has been reported 
that patients with SLE had elevated antibody responses to the 
herpesvirus EBV[1365,1366], and that this antibody response showed 
cross-reactivity to nuclear self-antigens and lead to autoimmune 
manifestations[1367,1368]. EBV induces IFN production by plasmacytoid 
DCs[1369] and therefore repetitive bursts of viral replication could 
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Table 50 Modulating effects of EBV on phagocytic biological functions (acc. to Savard & Gosselin [1360]; with own modification).

Phagocytes Dependent on viral adsorption Dependent on viral protein expression/replication

Neutrophils
Induction of IL-1R-1Ra>IL-1α/β, IL-8 and MIP-1α expression Induction of cellular death by apoptosis

Priming effect on LTB4 release and superoxide production

Monocytes

Induction of IL-6 expression Induction of IL-1β

Induction of GM-CSF Inhibition of TNFα and MIP-1α expression

Priming effect on LTB4 and C4 biosynthesis Inhibition of PGE2 biosynthesis

Inhibition of DCs development from monocyte precursors Inhibition of phagocytosis

DCs, dendritic cells; LTB4,  leukotriene B4; GM-CSF, granulocyte-macrophage colony-stimulating factor; MIP-1α, macrophage inflammatory protein-1α; 
PGE2, prostaglandin E2 (PGE2 exerted antiviral activity, regulated humoral response by increasing the immunoglobulin class switching, particularly IgE in 
B lymphocytes, favored TH0-like response to shift towards a TH2-like pattern, i.e. decreased IL-2 and IFN-γ production and promoted IL-4, IL-5 and IL-10 
synthesis by these cells [1360, 1361]. PGE2 and LTB4 inhibited NOS type 2 expression, iNOS synthesis and expression, and NO production in macrophages 
and hepatocytes [1302]. 

Table 51 EBV and CMV infections serology in patients with inactive and active SLE  (acc. to Larsen et al [1350]; with own modification).

Healthy controls (n = 31) Inactive SLE patients ( n = 76) Active SLE patients (n = 42) P-value

Female sex (%) 27 (87%) 71 (93%) 36 (86%) 0.32

Inclusion age (yrs), median, range 33.0 (19-57) 34.3 (16-61) 34.6 (16-58) 0.92

EBV serology 29 (92%) 76 (100%) 42 (100%) 0.006a

CMV serology 18 (58%) 58 (76%) 35 (83%) 0.035a

Anti-EBV IgG titersb, median (RU/mL),   range 10500 (2400-25400) 17900 (2900-28900) 19300 (2800-35400) < 0.0001a

Corticosteroid (%),  median (mg/day, range) n/a 73% 5 (0-55) 65% 7.5 (0-60) 0.49
aHealthy controls vs. all SLE patients. bOnly titers from seropositive individuals were included. RU, Relative Units.

Table 52 The rate of positive antibodies against various infectious agents 
in patients with celiac disease compared with healthy controls (acc. to Plot 
et al [1372]; with own modification).

Antigen tested Celiac patients Controls P value 
(two-sided t-test)

Antirubella IgG 79/90 (87.8%) 282/297 (94.9%) < 0.05

Anti-CMV IgG 49/90 (54.4%) 201/297 (67.7%) < 0.01
Anti-EBV capsid 
antigen IgG 71/90 (78.9%) 264/297 (88.9%) < 0.01

Anti-EBV nuclear 
antigen IgG 70/90 (77.8%) 268/297 (90.2%) < 0.01

account, at least in part, for the overexpression of IFN and IFN-
induced genes observed in SLE[1370,1371]. Larsen et al[1350] demonstrated 
exhausted cytotoxic control of EBV in SLE. They found that both 
inactive and active SLE patients had significantly elevated EBV viral 
loads compared to age-and sex-matched controls (p = 0.003 and p = 
0.002, respectively) (Table 51), and less EBV-specific CD8+ T cells 
were able to secrete effective molecules (IFN-g, TNF-α, IL-2 and 
CCL4) to kill EBV-infected targets. 
    It is disputed whether EBV reactivation is a cause or consequence 
of SLE disease activity and Larsen et al[1350] believe that frequent 
EBV reactivation appears to be an aggravating consequence, 
rather than a cause, of SLE immunopathology. This opinion may 
be supported by the similarly lower anti-EBV IgG titers between 
inactive and active SLE patients (Table 51), and confirm that another 
concomitant pathogen infecting these patients (but not CMV), such 
as for instance, T. gondii play an important role in activation of this 
clinical entity[141].
    Plot et al[1372] suggested that some viral infections, may have a 
protective role in the etiopathogenesis of celiac disease (Table 52). 
The authors believed that EBV, CMV, and rubella may establish a 
certain immunological background that disfavors the evolvement of 
some autoimmune conditions such as this clinical entity.
    However, although B lymphocytes were reported to generate 
TNF-α in response to EBV infection[1373], recombinant TNF-α was 
found to inhibit, in a dose-dependent manner, the proliferation and 
differentiation of both EBV-activated and -transformed human B 
cells[1374], known to be involved in the production of antibodies. In 
addition, during the acute phase of viral infection, rapidly reduced cell 
survival associated with episodes of neutropenia and monocytopenia 
was observed, thus at least temporarily or persistently influencing the 
immune defense of the host and potentially affecting the outcome of 
EBV and/or other concomitant pathogen(s) infections[1360]. 
    Sandberg-Bennich et al[1375] demonstrated that the most evident 
risk factor for development of celiac disease was associated with 
neonatal infections (OR =1.52, CI 1.19; 1.95). T. gondii infection 
may therefore play an important role in triggering development 

of both diabetes and celiac disease, especially that the increased 
percentage of antigliadin IgG antibodies was found to be associated 
with type 1 diabetes mellitus (T1DM)[104]. Moreover, Rostami 
Nejad et al[122] found that amongst 827 pregnant women, 154 (31%) 
and 58 (7%) of them had positive total IgG and IgM for T. gondii 
serology. In addition, 27 women were simultaneously diagnosed 
with celiac disease, and 16 out of 27 (59%) had infection with the 
parasite as compared with 257 out of 800 (32%) non-celiac disease 
pregnant women (OR = 3.07, 95% CI 1.4-6.7) (p = 0.04). The 
authors suggested that celiac disease during pregnancy increases the 
risk of T. gondii infection[122]. Critical analysis of the literature data 
suggests however that on the contrary, chronic latent infection with 
the parasite increases the risk of celiac disease development[102]. This 
reasoning is strongly supported by the report of Severance et al[123] 
that in mice receiving a standard wheat-based rodent chow, peroral, 
intraperitoneal and prenatal T. gondii exposure launched a highly 
significant generation of anti-gluten IgG antibodies in all infected 
animals compared to uninfected controls (p ≤ 0.00001). Perorally-
infected females showed higher concentrations of anti-gluten 
IgG than males (p ≤ 0.009) indicating that the parasite-generated 
gastrointestinal infection led to a marked anti-gluten response in a 
sex-dependent manner[123]. These findings may be explained by the 
following facts: 1) transepithelial migration of T. gondii is linked 
to its active motility and virulence[1376], 2) involves an interaction 
of human ICAM-1 with the parasite adhesion MIC2 resulting in its 
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immunoprecipitation[355], and 3) the parasite targets the paracellular 
pathway to invade the intestinal epithelium and affects epithelial 
tight junction-associated proteins[1377], thus finally affecting host 
intestinal wall permeability. The beneficial ameliorations effects of 
breastfeeding and human colostrum, which contains large quantities 
of lactoferrin, administered in neonatal autistic rats with celiac 
disease, may further support the above-presented reasoning[1378,1379]. 
In addition, recently, an increased anti-T. gondii IgG seroprevalence 
has been reported in autistic children[114], and the pathogen may 
be responsible for development of some other gastrointestinal 
disorders[120], including the finding of a strong association of 
protozoan-selected single nuclear proteins with Leśniowski-Crohn’s 
disease loci (p = 0.008)[128]. 
    In summary, TNF-α selectively inhibits activation of human 
B cells by EBV. A significantly lower occurrence of antibodies 
to persistent viral infections reported in patients with some ADs 
compared with controls at least in part may be due to suppressed 
(exhausted) function of host B cells. IL-10-generating B cells induced 
in the course of microbial infections can inhibit concurrent immune 
responses directed towards unrelated antigens and as a consequence 
ameliorate the clinical course of some ADs, and this could explain 
how some pathogens exert protective effects in specific clinical 
entities[651]. 
    Hepatitis B and C virus infections. HBV and HCV infections 
are a marked burden on global public health. Schweitzer et al[1380] 
reported that 248 million people were chronically infected with 
HBV worldwide in 2010, and approximately 780 000 persons die 
each year due to chronic hepatitis B infection and another 130 000 
from acute hepatitis B[1381]. The WHO estimates that 30–150 million 
people globally have chronic HCV infection, and 350 000 to 500 000 
people die each year from hepatitis C related liver diseases[1382]. Age-
specific prevalence varied by geographical region with prevalence 
below 2% in North America and Western Europe, up to 12% in 
Africa. In areas where the HBV is endemic, a substantial proportion 
of the patients are coinfected with hepatitis C and B[1383-1385]. Occult 
hepatitis B infection occurs frequently in patients with chronic 
hepatitis C liver disease and may have clinical significance[1386]. 
HBV/HCV dual infection affects viral load, serum antibody response, 
and proinflammatory cytokine levels, differently from HBV or HCV 
single infection (for instance, serum TNF-α, IL-6, and IL-8 were 
markedly lower in HBV/HCV dual-infected patients)[1387]. 
    Both HBV and HCV are transmitted parenterally, sexually and 
perinatally, with perinatal and sexual transmission being more 
common for HBV than for HCV[1388]. HBV is spread predominantly 
by percutaneous or mucosal exposure to infected blood and other 
body fluids with multiple forms of human transmission, including 
sexual contact[1389].
    The liver participates in local and systemic tolerance to self and 
foreign antigens and this function has been attributed to resident 
cells expressing antiinflammatory mediators and inhibitory cell 
surface ligands for T cell activation[1390]. Liver cells responsible for 
the tolerogenic properties of the organ include the resident DCs, liver 
sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. 
These cells mediate immunosuppression by generation of IL-10 and 
TGF-β, as well as by expression of the PD-L1. IL-10 or TGFβ and/
or PD-1, as well as CTLA-4, contribute to the immunosuppressive 
mechanisms of Tregs (CD4+CD25+Foxp3+ regulatory T cells). 
Hepatocytes also add to the liver tolerance effect by expression of 
MHC class II molecules[1390]. 
    Lin et al[1391] found that Tregs at least in part contribute to the 
defective functions of virus-specific exhausted CD8+ T cells in 

Table 53 The prevalence of anti-infectious agent antigen IgG antibodies 
in patients with autoimmune bullous disease (ABD) and controls (acc. to 
Sagi et al [163]; with own modification).
Infectious antigen Patients with ABD (n = 49) Controls (n = 99) P value

T. gondii 65% 40% 0.01

Hepatitis B core 35% 7% < 0.001

Hepatitis C 14% 0% < 0.001

H. pylori 90% 31% < 0.001

CMV 90% 75% 0.03

patients with chronic HBV infection. In such infection cellular 
immune responses of the host are weak or absent, which leads to a 
state of relative collapse of virus-specific adaptive immunity and the 
inability to control HBV replication[1392]. Barboza et al[1393] reported 
that increased frequencies of antigen-induced CD4+FoxP3+IL-10+ 

Tregs correlated with viral load suggesting that antigen-induced 
Tregs could contribute to an inadequate response against the virus, 
leading to chronic infection. 
    It was demonstrated[1394] that NF-κB was significantly decreased 
in the HCV-infected patients, and this decrease was associated with 
the presence of mixed cryoglobulins and RF. Decreased expression 
of NF-κB was found to be important in the development of 
peripheral T-cell apoptosis, thus contributing to viral persistence and 
autoimmunity in these patients[1394].
    Sagi et al[163] demonstrated significantly increased titers of serum 
IgG antibodies directed against various pathogens in the sera of 
patients with pemphigus and bullous pemphigoid as compared with 
controls. This finding support the hypothesis that infections, including 
HBV and HCV, play an important role in triggering and development 
of an autoimmune response in the genetically susceptible host (Table 
53). 
    High prevalence of autoimmune phenomena has been reported 
in HCV antibody positive patients with lymphoproliferative and 
connective tissue disorders[1395]. It appeared that some cases of 
idiopathic thrombocytopenic purpura may be linked to both HCV and 
HBV infection[1395]. Moreover, a significant increase of autoantibodies 
has been observed for HCV infection and thyroid autoimmune 
disorders (OR 1.6; 95% CI 1.4–1.9) as well as hypothyroidism (OR 
2.9; 95% CI 2.0–4.1)[1396,1397]. Patients with HCV were found to be 
more susceptible than patients with HBV to autoimmune thyroid 
disease[1398]. It must be noted that chronic HCV infection is associated 
with vitamin D deficiency, but it is yet unsolved what comes first, 
HCV infection or vitamin D deficit[1399].
    Agmon-Levin et al[91] evaluated the prevalence of serum antibodies 
against HCV and other infectious agents in a large number of 
sera from patients with 18 various ADs and found that anti-HCV 
antibody was detected in 115/1322 (8.7%) of patients with ADs and 
0.4% of matched controls (n = 236) (p < 0.0001). The prevalence 
of anti-HCV antibody was significantly higher in 7 specific ADs 
(cryoglobulinemia, mixed cryoglobulinemia, pemphigus vulgaris, 
vasculitis, secondary anti-phospholipid syndrome, Hashimoto’s 
thyroiditis, and inflammatory bowel disease) compared to controls. 
Patients with ADs and serum anti-HCV positivity also had an 
increased prevalence of antibodies against HBV core antigen, 
T. gondii and CMV as opposed to a lower frequency of serum 
autoantibodies[91].
    Finally, Ram et al[1400] suggested that for instance HBV infection 
may exert a protective role in some ADs because they found a 
low percentage of antibodies to HBcAg in patients with SLE, MS 
and T1DM compared with matched healthy donors. In another 
study[1401], mean antibody titres to measles in patients with RA were 
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also significantly lower than in controls, and an inverse correlation 
between measles antibody levels and serum globulin concentrations 
was detected. Furthermore, similar markedly lower mumps virus 
IgG class antibody levels were found in type 1 diabetic children 
than in their non-diabetic siblings (p < 0.0005) approximately 2.5 
years after the mumps-measles-rubella vaccination[1402]. However, as 
it was discussed earlier, these findings may rather reflect decreased 
immune responsiveness of these patients because during many 
chronic infections virus-specific CD8+ T cells, CD4+ T cells, as well 
as B cells, undergo exhaustion as they gradually lose their full ability 
to respond to antigenic activation, and CD8 T-cell dysfunction has 
been well documented in several chronic human viral infections, 
including HBV and HCV[597,635,1403-1407]. It must be noted that for 
these two viruses clonal exhaustion may be a protective mechanism 
preventing severe immunopathology and death from an exaggerating 
CD8 T cell response[1408]. Moreover, during chronic viral and T. 
gondii coinfections, intracellular tachyzoites could impair capacity of 
lymphocytes to produce immunoglobulin and cytokine secretions[569].
    HIV infection. Critical bioevents of HIV-1 infection occur in 
lymphoid tissue and typically are associated with coinfection by other 
pathogens that usually worsen the clinical course of HIV disease[1409]. 
T. gondii is a common HIV copathogen that worsens the clinical 
course of HIV disease[1410]. Sassi et al[1409] examined the interaction of 
both these microbes in coinfected human tonsillar tissue ex vivo and 
found that live T. gondii preferentially inhibited R5 HIV-1 replication 
(but not X4 HIV-1), because its genome encoded cyclophilin-18 from 
the parasite that binds to a chemokine receptor CCR5 (an inhibitor 
of HIV-1 cell fusion) and was able to suppress R5 HIV-1 replication 
in peripheral blood monocyte cells[1411], thus eventually altering 
the risk of HIV-1 infection between T. gondii-infected and control 
participants. Another pathogen, HHV-7 also upon HIV-1 coinfection 
in lymphoid tissue in vivo suppressed replication of R5, but in 
addition downregulated CD4 (the HIV-1 receptor) on the surface of 
both infected and uninfected T cells[1412]. 
    Measles virus infection. Measles is sometimes a severe viral 
infection and one of the most infectious of communicable diseases. 
However, during 2000–2016 period, annual reported measles 
incidence decreased from 145 to 19 cases per million persons, and 
annual estimated measles deaths decreased 84%, from 550,100 to 
89,780[1413]. In 2017, countries of the European Region reported 
15,941 confirmed measles cases, and the highest incidence was 
recorded in Romania (252.4 cases per 1 million population); there 
were 20 measles deaths, including 10 registered in Romania[1414].
    Measles results in a systemic illness which causes profound 
immunosuppression frequently leading to serious complications. 
Recovery from measles produces lifelong immunity. Increased titres 
to MV or its genome were found in sera of patients with several 
ADs[1415,1416], including SLE[1417], ASD[1418,1419], autoimmune chronic 
hepatitis[1420], subacute sclerosing panencephalitis[1421], inflammatory 
bowel disease[1422], MS[71,1423], type 1 diabetes[1424]. There have 
been also reports of paramyxovirus nucleocapsid-like structures 
and elevated measles antibody titers in several connective tissue 
disorders, such as RA, polymyositis, scleroderma, Goodpasture’s 
syndrome, Sjogren’s syndrome, and Reiter’s syndrome[1425]. In one 
study[1401], a subdivision of patients with RA, myasthenia gravis and 
primary biliary cirrhosis showed that the presence of anti-nuclear 
antibody (ANA) has been associated with markedly increased 
measles antibody concentrations compared with the ANA-negative 
sera. Interestingly, it was found that earlier natural infection or 
vaccination against measles seems to have an inhibitory effect on the 
development of thyroid autoantibodies[1426]. 

    Tishon et al[1427] found that CD4 T cell control primary MV 
infection of the CNS and regulation is dependent on combined activity 
with either CD8 T cells or with B cells. MV-immunosuppression 
represents a direct contact-mediated silencing of T cells which 
acquire a transient paralytic state[1428]. The immunosuppression 
include: a) lymphopenia[1429] (it should be noted that reduced T cell 
numbers and the resulting exaggerated homeostatic-type proliferation 
of T cells due to the increased responses to cytokine IL-2, a mediator 
that regulates T cell turnover, generate autoimmunity[1430]), b) a 
prolonged TH2 immune responses resulting in cytokine imbalance 
consistent with suppression of cellular immunity to secondary 
infections[1431], and c) T-cell nonresponsiveness due to silencing of 
peripheral blood lympocytes that fail to expand in response to ex vivo 
stimulation[1431,1432]. Lymphopenia results from depletion of T cells 
by mechanism also involving MV infection, and expression of the 
major MV receptor CD150 plays an important role for targeting these 
cells[1431]. Virus transfer is thought to be mediated by monocytes[1433] 
and DCs, which are considered as central to the induction of T-cell 
silencing and functional skewing. DCs were identified as initial target 
cells in vivo of MV and contribute to functional deficiency in these 
cells because the ability of infected DC cells to stimulate T cells is 
compromised[1432]. MV infection resulted in apoptosis (and/or cell 
cycle arrest[1434]) in DC/T-cell cocultures, which may contribute to a 
reduced T-cell response[1432]. In addition, MV-DCs interaction inhibits 
innate immunity because selective signaling through TLR4 mediates 
suppression of the proinflammatory cytokine IL-12 synthesis[1435,1436]. 
    During coinfection of MV with T. gondii the above-mentioned 
disturbances may be enhanced by malnutrition due to the parasite 
infection-associated iron[178], iodine[219,232,233], and/or folate[263] 

deficiency. This may result in establishment of persistent MV 
infection in the CNS, probably enhanced by immunosuppresion 
associated with concomitant latent chronic T. gondii infection and 
finally leading to development of ASD[71,114]. In addition, there is 
evidence supporting an important role for hyperthermia and HSPs 
in the immune response to MV infection, which promotes MV 
clearance from brain in a mouse model of persistent infection[1437,1438]. 
These experimental findings are well in line with transient beneficial 
effects of fever on behavior of children with autism[1439].

BENEFICIAL EFFECTS OF VITAMIN D IN ADs 
AND T. GONDII INFECTION
Vitamin D markedly decreases the proliferation of T. gondii 
tachyzoites in macrophages and reduces tissue pathology in 
animals infected with the parasite
    Vitamin D. Hypovitaminosis D affects more than one billion 
people to approximately 50% of population worldwide[1440,1441], and 
is linked to some of the important risk factors of leading causes of 
death in the US[1442]. The National Health and Nutrition Examination 
Survey 2005 to 2006 data analyzed for vitamin D deficiency (serum 
25-hydroxyvitamin D levels ≤ 20 ng/mL) in adult participants (n = 
4495) confirmed that the overall prevalence rate was high (41.6%), 
with the highest rate found in blacks (82.1%), followed by Hispanics 
(69.2%)[1442]. 
    Epidemiological data show that low vitamin D status is associated 
with an enhanced autoimmune response in healthy individuals, and 
increased risk of TH1 mediated both autoimmune clinical entities 
and neurodegenerative diseases[1440,1443-1447]. Decreased vitamin D 
levels have been found in several ADs, including RA, SLE, systemic 
sclerosis, MS, inflammatory bowel diseases, T1DM, autoimmune 
thyroid diseases (Hashimoto’s thyroiditis and Graves’ disease), 
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Table 54 Effects of 1,25(OH)2D3 on innate immune system (acc. to Pelajo et al [1455]; Youssef DA et al [680]; and Szodoray et al [1445] with own 
modification).

Vitamin D actions on the immune system References

Decreases the antigen-presenting activity of macrophages to lymphocytes; acts on phenotype and function of antigen 
presenting cells (monocytes, macrophages, DCs) via oxidative burst, production of acid phosphatase and hydrogen 
peroxide, and maturation of cytokines; acts on neutrophils mobility and phagocytic function; upregulates antimicrobial 
peptides (cathelicidins, beta-2/beta-3 defensins) in neutrophils, NK cells, monocytes, macrophages, and lymphocytes

[680, 1475, 1476]

Inhibits the maturation of monocytes into DCs [460, 1477]

Induces the activation of Tregs and NK T cells [1478, 1479]

Inhibits TH1 type cytokine response [460, 1461, 1472, 1477]

Decreases IL-2, IFN-γ, and CD4 and CD8 DNA  synthesis [460, 680, 1475-1477]

Stimulates the TH2 type cytokine dominance [460, 1472, 1477, 1495, 1479]

Increases IL-4, IL-5, IL-10, and  TGF-β1 a synthesis [1462, 1476, 1477]

Inhibits the synthesis of IL-12, IL-1α and IL-1β, IL-6 and TNF-α [1461, 1472, 1475, 1478]

Inhibits B cell proliferation, plasma cell differentiation, and antibody/immunoglobulin production                           [460, 675, 1476, 1477, 1482, 1483]

Triggers B cell apoptosis [680]

Increases apoptosis induced by DCs and T lymphocytes-tolerance [1483]

Induces autophagy in human monocytes/macrophages via cathelicidin                                                                   [1462, 1465]

Induces NOS in a human monocyte/macrophage cell line b [1484]
NOS, nitric oxide synthase. a  This cytokine is well known for its immunosuppressive action on leukocyte cell lines [1473], and specifically was found to be an 
antagonist of proinflammatory cytokines TNFα, TNF-β, IFN-γ and IL-2 [545, 547, 1485]; on the other hand, however, TGF-β belongs to biomediators favoring 
growth of T. gondii [1486]. b NO is an effector molecule of parasite killing [1587]. Interestingly, 1α25(OH)2D3 suppressed growth and triggered the destruction 
and clearance of another intracellular pathogen Mycobacterium tuberculosis by activating autophagy in infected human monocytes/macrophages [1488]. 

mixed connective tissue disease, scleroderma, autoimmune gastritis, 
and autoimmune uveitis[1447-1457]. For example, Kamen et al[1458] 
showed that 67% of the 123 analyzed patients with SLE were 
vitamin D deficient, with mean serum concentrations markedly 
lower among African Americans (15.9 ng/mL) compared to 
Caucasians (31.3 ng/mL), and vitamin D levels < 10 ng/mL were 
found in 22 of the SLE cases. It must be noted that hypovitaminosis 
D was also reported in obese children and adolescents, and serum 
vitamin D was positively correlated with insulin sensitivity, which 
was fat mass-mediated[1459].
    Vitamin D was found to modulate both the innate and acquired 
immune systems[1444,1460-1463]. Generally, immunoregulatory actions 
of active vitamin D on various immune host cells are the following: 
TH1 (decrease number, suppress function), TH2 (increase number/
function, suppress function), regulatory T cells (Tregs) (increase 
function, increase number), DCs (inhibit maturation, inhibit TH1 
induction, increase TH2 induction)[1443]. Macrophages, endothelial 
cells, and smooth muscle cells, among others, are able to transform 
vitamin D (25(OH)3D3) to its active hormonal form, 1,25(OH)2 D3. 
The active metabolite primarily mediates its effects through the 
intracellular vitamin D receptor (VDR)[1464], which is expressed 
in most cell types of the immune system, in particular in antigen 
presenting cells, such as monocytes, macrophages, DCs[1465], B 
cells, and CD4+ and CD8+ T cells[1460,1464]. DCs play a central role 
in orchestrating cellular immune responses to self and foreign 
antigens[1466]. Vitamin D induces naïve CD4+ T to differentiate into 
Tregs producing IL-10[1446]. 1,25(OH)2 D3 inhibits proliferation of 
TH1 cells through impairing production of IL-2, TNF-α, and IFN, as 
well as TH17 cells, and thus skewing cytokine production toward a 
TH2 phenotype[680,1467,1468]. Moreover, this vitamin modulates human 
B cell differentiation[661]. Vitamin D can exert its antiinflammatory 
effects through regulating the biosynthesis of proinflammatory 
molecules in the prostaglandin pathway or through NF-κB 
enhancer of activated B cells by affecting cytokine production 
and inflammatory responses[1451]. Vitamin D may also prevent 
autoimmunity by stimulating naturally occurring Tregs[1469]. 
    Vitamin D facilitates also neutrophil motility and fagocytic 
function[1470]. Circulating vitamin D levels have a direct influence on 

macrophages, increase their “oxidative burst” potential, such as for 
instance maturation and generation of cytokines, hydrogen peroxide, 
and acid phosphatase[680,1471]. Active vitamin D and corticosteroids 
exerted additive immunosuppressive effects on TH1 responses[1472]. 
All these actions finally result in a TH2 type-driven antiinflammatory 
state in the host[1473,1474]. A summary of multiple immunoregulatory 
actions of vitamin D on immune system is presented in Table 54. 
   Several of the above-presented actions of vitamin D on immune 
system may have beneficial effects on clinical course and outcome of 
patients with ADs[99,1469,1489,1490]. 
    T. gondii infection. An infectious pathogenesis put forward 
that intracellular parasite infection disrupt the vitamin D regulated 
immune system resulting in persistent infection and chronic 
inflammation. Studies showed that 1,25(OH)2D3 directly increased 
cathelicidin antimicrobial peptide CAMP gene expression which 
could enhance host defense against infection[1491,1492]. Vitamin D was 
also required for IFN-γ-mediated antimicrobial activity of human 
macrophages[1462]. Moreover, it induces NOS in a human macrophage-
like cell line[1493], and NO has a strong toxoplasmacidal activity[863,998]. 
It should be added that NO production in macrophages, endothelial 
cells and hepatocytes is positively controlled by TNF-α, IFN-γ, IL-2, 
and negatively controlled mainly by IL-10, IL-4, TGF-β[1487].
    Finally, it must noted that vitamin D significantly decreased 
in vitro proliferation of T. gondii tachyzoites in macrophages 
(Table 55), increased NO generation in these cells (Table 56)
[1494], and diminished various tissue pathology in animals infected 
with the parasite (Table 57), possibly by acting on tachyzoites in 
parasitophorous vacuole[681]. Interestingly, vitamin D may also be 
linked to the increased susceptibility and mortality of mice infected 
with the pathogen, probably because of its downregulation of the TH1 
type cytokine responses[1495].
    In summary, low serum levels of vitamin D are frequently reported in 
patients with ADs and these clinical entities have sometimes a tendency 
to co-occur[1496]. There is a vast evidence indicating that this vitamin 
may prevent, reduce the risk and/or modify the course of ADs[1497], 
especially that it is beneficial in bacterial, viral and T. gondii infections 
frequently associated with these entities. It must be noted that vitamin 
D exerts marked antiinflammatory and toxoplasmacidal effects.
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Table 55 Effect of vitamin D3 and IFN-γ on proliferation of T. gondii (RH strain) tachyzoites per infected peritoneal macrophage of BALB/c mice after 
incubation for 96 hrs in RPMI1640 cells culture (acc. to Ghaffarifar et al [1494]; with own modification).
Experiment No. Controls Solvent a Vit D3 (1000 IU) IFN-γ (100 IU) Vit D3 (1000 IU) plus IFN-γ (100 IU)

1 3.01 ± 0.14 2.93 ± 0.16 2.49 ± 0.19 b 2.6 ± 0.2 b 2.37 ± 0.19 b

2 3.15 ± 0.12 3.03 ± 0.16 2.74 ± 0.16 2.5 ± 0.15 b 2.58 ± 0.13 b

3 3.05 ± 0.15 3.04 ± 0.14 2.82 ± 0.17 2.57 ± 0.16 b 2.69 ± 0.2 b

4 3.16 ± 0.14 3.0 ± 0.14 2.39 ± 0.19 b 2.59 ± 0.2 b 2.03 ± 0.19 b

Numbers of tachyzoites are given as a mean ± SD. a Ethanol 95. b Statistically significant differences compared with controls (p ≤ 0.05). 

Table 56 Effect of vitamin D3 and IFN-γ on NO production by peritoneal macrophages of BAL:B/c mice infected with T. gondii (RH strain) after incubation 
for 24 hrs in RPMI1640 cells culture (acc. to Ghaffarifar et al [1494]; with own modification).
Experiment No. Controls Solvent a Vit D3 (1000 IU) IFN-γ (100 IU) Vit D3 (1000 IU) plus IFN-γ (100 IU)

1 109 ± 8.02 108.2± 12.45 165 ± 11.30 b 146 ± 7.22 b 187.8 ± 9.82 b

2 108 ± 9.46 108.9 ± 6.93 121.2 ± 6.68 139.5 ± 5.76 b 136.2 ± 10.21 b

3 109.6 ± 7.35 108.2 ± 4.96 139 ± 7.01 b 146 ± 4.93 b 146.9 ± 9.62 b

4 109 ± 7.03 108.6 ± 4.26 166 ± 7.01 b 146.2 ± 5.60 b 191.5 ± 9.62 b

Values are given as mean ± SD. a Ethanol 95. b Statistically significant results compared with controls (p ≤ 0.05). NO production was estimated as a nitrite 
release from infected macrophages (µM).

Table 57 Effect of pretreatment with 1,25(OH)2D3 (0.5 µg/kg/2 days) on 
tissue pathology caused by T. gondii avirulent ME49 strain infection with 
20 cysts administered intraperitoneally in BALB/c mice (acc. to Rajapakse 
et al [681]; with own modification).

Tissue Pathology No 
treatment

Treatment 
with Vit D3

Lung
Alveolar macrophages 1 0

Inflammatory foci 2 1

Liver
Inflammatory foci 3 2

Hemorrhage 2 0

Mitosis 1 0

Small intestine
Inflammatory infiltrates 1 0

Necrotic mucosal cells 2 1

Brain Presence of the parasite 2 0

Spleen Granulocytes 2 1
Histopathologic examination of the tissues was performed 7 days post 
inoculation. Numbers are based on severity of the lesions (0, no lesion; 
1, mild; 2, slight; 3, moderate changes) and the total was divided by the 
number of animals in the group. Also, in vitro studies with incubated 
intestinal epithelial cells showed a significant dose-dependent inhibition 
of intracellular T. gondii tachyzoites (RH strain, type I) proliferation at 
10-7 M of 1,25(OH)2D3 concentration. 

CONCLUSION
All presented literature data may suggest that T. gondii is the chief 
of the criminal gang responsible for triggering, development and 
clinical course of several ADs. This recommendation is supported by 
the following facts: a) approximately 30-50% of the world population 
is infected with the parasite, b) the pathogen was detected in patients 
with various ADs, c) T. gondii have a plethora of antigens at its 
disposal that can attack host protein and carbohydrate substances 
resulting in development of antibodies and autoantibodies to self 
antigens and enhancing immune responses to nonself antigens, d) 
specific molecules of the microbe manipulate multiple strategies to 
downregulate innate and acquired defense immune responses of the 
host, e) T. gondii in the host may act in the form of tachyzoites and/
or bradyzoites, being present intracellularly and/or circulating in the 
blood, and attacking all nucleated cells, particularly endothelial cells, 
as well as affecting bystander cells, thus leading to development of 
various organ-specific and organ-nonspecific clinical entities. Dual 
activity of the parasite to both promote and inhibit cell apoptosis and 
impaired clearance of autophagy proteins that serve as a persistent 
source of foreign antigens favor development of autoimmunity. 

Finally, it must be emphasized that H. pylori and/or viral infections, 
although important in the pathogenesis of several ADs, have much 
less efficient and not such sophisticated biological armamentarium 
used to abnormally affect host immune responses, than the parasite T. 
gondii.
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