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ABSTRACT
OBJECTIVE: The aim of this study is to produce a critical analysis 
about the properties of human tendons and review any progress that 
has been developed in tendon augmentation with mesenchymal stem 
cells.
MATERIALS/SUBJECTS AND METHODS: Currently published 
literature, written in English and distributed via Medline, Embase, 
Google Scholar and Cochrane Library was studied. References of 
retrieved articles were also analysed for possible inclusion.
RESULTS: A concise description of tendon characteristics and 
process of tendon healing process is provided. Stem cells varieties 
are reported, along with harvesting possibilities, most promising 
being adipose and mesenchymal stem cells. Current methods of stem 
cell application are via scaffold creation, cell-seeded materials to the 
degenerative tendon and cell injection. So far only stem cell injection 
has been involved in human studies and relevant applications in 
equinus tendinopathy have been also described. Several authors have 
also investigated stimulation of stem cells by mechanical means or 
growth factors; almost all studies have demonstrated positive results.
CONCLUSION: In any way, the application of stem cells has 

shown promising results in augmenting the healing process of either 
ruptured or degenerative tendons. More human studies should focus 
on what seems a currently narrow but genuinely promising field 
regarding tendon augmentation procedures.

© 2015 The Authors. Published by ACT Publishing Group Ltd.
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INTRODUCTION
Tendons are tough fibrous structures that connect muscles to bones 
and withstand exceptionally high tensile loads[1]. By transmitting 
muscular forces to bones, the tendons largely contribute to joint 
and body movements. However, continuously bearing loads may 
lead to tendon injuries and tears[2]. Tendons generally heal slowly 
due to poor blood supply. The strength of the created scar tissue is 
biomechanically weaker than the original tendon and therefore a 
significant risk of re-rupture exists[3]. Functional restoration of the 
injured tendon still presents a challenge and it is mainly affected from 
both intrinsic and extrinsic factors[4].

Tendon anatomy
The synthesis of a tendon includes water, collagen (mostly Type 
I, 98%), elastin, proteoglycans such as decorin and aggrecan, 
and cells such as tenoblasts and tenocytes. The structure is multi-
unit hierarchical and contains fibrils, fibre bundles, fascicles and 
tendon unit[5]. Microscopically, tendons have a crimped waveform 
appearance that disappears when stretched and reappears when 
unloaded as a result of the cross-linking of proteoglycans. This crimp 
pattern contributes to a tendon’s task, as on a repaired tissue it has 
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been found smaller and with decreased functionality[5]. Along with 
the crimp pattern, cells sense any mechanical forces and convert 
them into biochemical signals that lead to adaptive physiological 
or pathological changes. Through these alterations a tendon adapts 
and changes its structure, composition and ultimately mechanical 
properties[5].
    Tendons can be categorised as intrasynovial if they are surrounded 
by a sheath or extrasynovial if they are not. Both tendon types 
are similar in terms of composition and architecture but different 
regarding their nutrition and mechanical properties. An intrasynovial 
tendon, such as the flexor digitorum profundus, receives most of 
its nutrition by diffusion of elements from the synovial sheath and 
it has a minimal direct blood supply. Extrasynovial tendons, like 
Achilles tendon, receive nutrition directly from arteries deriving 
from the periosteum, musculotendinous junction, surrounding 
soft tissues and paratenon (if it is apparent)[6-7]. They have greater 
tensile strength but weaker compressive properties compared to 
intrasynovial ones[8]. 
    Tendons are tissues with viscoelastic behaviour that can be 
stretched or lengthened up to a certain elastic limit. Specifically, 
when a strain of up to 4% is applied, tendons act in an elastic manner 
and reform to its original shape and performance after release of the 
strain. Strains in excess of 4% cause microscopic and macroscopic 
failure of the tissue, known as plastic deformation[9]. Tendons contain 
also mechanoreceptors that can detect changes in tension, speed, 
acceleration, direction of movement, and position of the joints. They 
are activated by stretch stimuli and adjust muscle contracture in order 
to maintain the position and stability of the joints[4].
    Tendons have a relatively low metabolic rate. They consume 
small amounts of oxygen, as they obtain most of their energy from 
anaerobic pathways such as glycolysis and pentose phosphate cycle. 
The low metabolic rate of tendon tissue contributes to its resistance 
to withstand loads and remains in tension for long periods of time[10]. 
On the other hand, the low metabolic rate results in a slow adaptive 
response of tendon to changes in loading, and a slow rate of recovery 
and healing after injury.

Pathophysiology of Tendon Disorders
Tendon injuries can be acute or chronic. Physical load, local 
environment, occupation and training are considered the main 
extrinsic factors affecting tendon performance in trauma. In addition, 
age, gender, systemic diseases like rheumatoid arthritis, medications 
like fluoroquinolones or statins, and genetic predisposition contribute 
the intrinsic factors leading to tendon tear[4,11-19].
    Apart from acute ruptures, chronic tendon disorders may also be 
encountered. Tendinopathy, tendinosis and tendinitis are common 
tendon disorders that may cause significant functional impairment 
and even tear[3,20]. Tendinitis describes a condition where active 
inflammation of the tendon is implied, whereas tendinosis and 
tendinopathy are more general terms that refer to a pathological 
state of a tendon[3,20]. Tendinosis is referred to a degenerative tendon 
without accompanying inflammation. Tendinopathy includes an 
inflammatory reaction of tendon tissue as a result of tear or vascular 
impairment[15]. Tenosynovitis is a term used when inflammatory 
changes in synovial sheaths are apparent[1]. The exact mechanisms 
and the inflammation pathways that lead to tear of tendon 
regeneration behind these conditions are still, to a large extent, 
unknown and therefore the outcome evaluation cannot be easily 
defined.
    Recent studies examining the macroscopic and microscopic 
changes of tendon disorders have demonstrated that little or no 
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inflammation is actually present in tendons exposed to overuse[21-23]. 
Histopathologic changes associated with tendinopathy include 
degeneration and disorganization of collagen fibers, increased 
cellularity but minimal inflammation response[21,23]. Tendon 
thickening and loss of mechanical properties were also found[23]. 
Molecular alterations have been also detected in overuse and acute 
injuries. These include release of matrix metalloproteinases (MMPs), 
increased tendon cell apoptosis, increased mucin content and 
chondroid metaplasia, and expression of protective factors such as 
insulin-like growth factor 1 (IGF-1) and nitric oxide synthetase (NOS)
[24-31]. Although the majority of these changes are pathologic and 
result in tendon degeneration, others appear beneficial. It seems that 
the tendinopathy is the result of imbalance between the protective/
regenerative changes and the pathologic responses deriving from 
tendon overuse[32]. 

Biology and biomechanics of tendon healing
Tendon healing occurs in three major phases that are not clearly 
distinguishable[10]. The first stage is the inflammatory stage that 
begins after injury and continues for hours to a few days. Afterwards, 
the remodelling stage comes with collagen type III synthesis. The 
final stage is remodelling, which lasts approximately 6 weeks and 
divided into a consolidation and a maturation phase. During that time, 
the healing tissue is resized and reshaped. In consolidation phase, 
collagen type I synthesis is initiated. In maturation phase, the fibrous 
tissue transforms slowly (within several months) into scar tissue[3-4,10].
    Tendon healing studies have mainly been performed on either 
transected animal tendons or ruptured human tendons. However, their 
relevance to human tendinopathy with its associated healing failure 
response remains unclear[4]. It is generally accepted that tendons heal 
by formation of scar tissue due to proliferation of the peritendinous 
connective tissues. Collagen is the major component of the newly 
created tissue but the fibres are randomly arranged in all directions. 
There is also a difference regarding the types of collagen being 
produced, especially in tendinopathy[33-35]. The biochemical properties 
of scarred tendon tissue are not the same compared to normal 
uninjured tendons[3,34-35]. Scarred tendons have lower capability of 
withstanding and transferring forces, and therefore the risk of re-
rupture is greater.

Treatment Methods for Enhancing Tendon Healing
In order to restore the injured tendon properties and optimize 
tendon healing, several studies and experiments describing different 
biological treatment modalities have been published. Biological 
augmentation of tendon healing has been investigated by using local 
delivery of growth factors[36-37], stem-cell[38] and tendon-derived cell 
therapy[39], gene-therapeutic approaches based on vehicles encoding 
selected factors and combinations of the above[4]. Although many of 
these studies have produced optimistic results, only few have been 
applied to animals and only one to humans, due to lack of robust 
clinical studies. The equine industry shows at present an increased 
interest for such methods of enhancing the traditional approaches of 
Achilles tendon tears and disorders in horses[40].
    Regarding stem-cells studies, various tissue engineering 
approaches using mesenchymal stem cells (MSC) have been 
proposed to facilitate in vivo regeneration of damaged tissue or 
to reconstitute tendon tissue in vitro[39,41]. This is achieved after 
differentiation of MSCs to biomechanically superior tendinous or 
ligamentous tissues after interaction with the local environment[4], 
which holds the promise of restoring a tendon to its pre-pathological 
function.
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STEM CELLS
1. Nature and origin of mesenchymal stem cells
Mesenchymal stem cells (MSCs) have been the focus of scientific 
interest for many years due to their healing promoting properties[42-43]. 
Stem cells can differentiate into a variety of cell types including 
osteoblasts, chondrocytes, adipocytes, myoblasts and fibroblasts[44]. 
A stem cell by definition is a cell type which, in the adult organism, 
can continue to proliferate in spite of the physiologic or artificial 
removal of cells from the population[43]. The differentiation of MSCs 
into different phenotypes is strongly associated with the interaction 
between intrinsic genomic potential and extrinsic local signalling. 
Both mechanisms are combined at each lineage step in order to 
complete the developmental pathway of the emerging tissue[43].
    Stem cells may derive from different sources by using different 
harvesting techniques. Specifically, they can be harvested from bone 
marrow, periosteum, muscle connective tissue and adipose tissue[45,46]. 
Although they can be found in almost all human organs[47], bone 
marrow remains the most popular source of MSCs[44]. Adult stem 
cells from bone marrow are usually obtained by aspiration from the 
anterior superior iliac crest[44]. The age of the donor, the aspiration 
site, and the systemic disease state may affect the number of 
harvested MSCs[48]. Approximately, there is one mesenchymal stem 
cell for every 100,000 nucleated marrow cells in a young healthy 
donor[49].
    Adipose-derived mesenchymal cells (ASCs) offer also great 
promise for cell-based therapies[50]. Due to ease of harvest and 
abundance, ASCs have gained increasing popularity in many clinical 
applications. ASCs are harvested from adipose tissue derived from 
subcutaneous surgery. Stem cells are then isolated using enzymatic 
digestion, filtration and centrifugation of the stromal vascular fraction 
(SVF) that contains the stem cells along with non-adherent cells such 
as red blood cells[51-53].
    Stem cells can be also found in tendons along with differentiated 
tenocytes. Zhang and Wang in a recent study[39] analysed the 
properties of tenocytes and tendon stem/progenitor cells (TSCs). 
TSCs exhibited distinct properties compared to tenocytes, including 
differences in cell marker expression, proliferative and differentiation 
potential, and cell morphology in culture. However, the option of 
using TSCs to more effectively repair or regenerate injured tendons 
should be further evaluated and seems less practical than the use of 
MSCs[54].

2. Mscs: Applications in tendon disorders
2.1. Scaffolds
Mesenchymal stem cells and precursor cells are ideal candidates for 
tendon and ligament tissue engineering. MSCs have been mostly 
applied for creation of tendon grafts or augmentation of tendon grafts 
incorporation[32,54-57]. Scaffolds are necessary for accommodating cell 
growth and tissue genesis and providing structural and mechanical 
support. Lack of inflammatory or immune reaction as well as 
cellular integration, proliferation, and differentiation into the target 
tissue are key concerns for the selection of the optimum scaffold[58]. 
Moreover, the anabolic rate of the implanted tissue should exceed 
the degradation rate and the catabolic products should be eliminated 
through natural metabolic pathways[59].
    A scaffold for tendon engineering should have similar 
characteristics to tendons, native extracellular matrix, and potential 
of cell seeding[60]. In Omae et al’s animal study[60], decellularized 
multilayer tendon slices were seeded with bone marrow stromal 
cells (BMSCs). The seeded cells and the collagen fibers of the 

tendon slices were aligned after histology control. qRT-PCR analysis 
revealed greater tenomodulin and MMP13 expression and lower 
collagen type I expression in the composite than in the BMSCs 
before seeding. The results of the study suggested that BMSCs could 
express a tendon phenotype in this environment[60].
    Natural scaffolds include the use of collagen, hyaluronic acids, 
calcium alginate, and chitosan. Majima et al[61] noticed that a hybrid 
chitosan-based hyaluronic acid scaffold had better mechanical 
properties and exhibited reduced toxicity and inflammation after 
implantation. Sawaguchi et al[62] investigated the effect of various 
cyclic mechanical stresses on cell proliferation and extracellular 
matrix production. A biodegradable three-dimensional scaffold made 
from chitosan and hyaluronan was used for ligament and tendon 
tissue engineering. In vitro acceleration of tissue regeneration in 
ligament and tendon tissue engineering was found. 
    Synthetic scaffolds are advantageous for tissue-engineered 
constructs due to increased control of material properties. The most 
commonly used synthetic scaffolds have been made of poly-lactic 
acid (PLA)[11,18-20] and poly lactic-coglycolic acid (PLGA). Ouyang 
et al[63] examined the abilities of bone marrow stromal cell-seeded 
knitted PLGA fiber scaffold in repairing the Achilles tendon. They 
found that the implanted allogeneic MSCs could survive for as 
long as 8 weeks at the rabbit lesion area. Furthermore, they could 
differentiate into spindle-shaped cells 5 weeks after implantation 
within the rabbit tendon wound site. In another study, the same 
authors studied the results of using knitted PLGA scaffold loaded 
with bone marrow stromal cells for the repair and regeneration 
of rabbit Achilles tendons[64]. The knitted PLGA biodegradable 
scaffold loaded with allogeneic bone marrow stromal cells managed 
to regenerate and repair the gap defect of Achilles tendon to a 
statistically significant degree when compared to the control group.

2.2.Cell-seeded materials
Delivering of mesenchymal stem cell-seeded implants to a tendon 
gap may improve repair biomechanics. In a previous study, cultured, 
autologous, marrow-derived mesenchymal stem cells were suspended 
in a collagen gel delivery vehicle[65]. Mesenchymal stem cells were 
used in a collagen matrix for Achilles tendon repair. The cell-gel 
composite was subsequently contracted onto a pretensioned suture. 
The resulting tissue prosthesis was then implanted into a 1-cm-
long gap defect in the rabbit Achilles tendon. The results indicated 
that introduction of mesenchymal stem cell-contracted, organized 
collagen implants to large tendon defects can significantly improve 
the biomechanics, structure, and probably the function of the tendon 
after injury. Another study showed that pluripotential embryonic 
cells could be seeded onto sutures, adhere, and survive in culture. 
The coating of sutures with poly-l-lysine and fibronectin offered 
significant improvement in retention of viable cells[66].

2.3.Cell injection-implantation
Injection and implantation of MSCs in tendon defects has been also 
studied in experimental animal studies[67-70] and one human study[71]. 
Awad et al[67] implanted MSCs in surgically induced rabbit patellar 
tendon defect. Delivering a large number of mesenchymal stem 
cells to the wound site resulted in a significant improvement of the 
biomechanical properties of the tendon. However, the implantation 
produced no visible improvement in tendon’s microstructure.
    MSCs were found also to restore the native structure of the tendon 
to bone junction healing in a study where hallucis longus tendons 
were translated into 2.5-mm-diameter calcaneal bone tunnels[72]. 
Moreover, Soon et al examined the effect of coating allografts 



408© 2015 ACT. All rights reserved.

Sachinis N et al. Tendon healing mesenchymal stem cells

further investigated. Information regarding the optimum type of 
MSCs and the proper number of cells that need to be implanted is 
required. Also, there is a need to clarify what is the best method of 
delivering MSCs into a tendon tissue. Finally, due to lack of clinical 
evidence, human trials examining the efficacy of MSCs in tendon 
regeneration and repair are necessary in order to materialise and 
make applicable these options of tendon repair to a human patient.
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