
tissue engineering. In summary, the current literature regarding ASC 
clearly shows that not all fat is created equally. Clear cut, and for the 
most part reproducible, differences exist in the osteogenic potential, 
adipogenic potential and proliferation of ASC depending on their 
site of origin. How this information should be used is still a matter of 
uncertainty. 
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INTRODUCTION
Although bone marrow has long been studied as the primary source 
of mesenchymal stem cells (MSC), these bone marrow-derived stem 
cells (BMSC) present a number of drawbacks. Autologous tissues 
such as BMSC are often limited in availability, and require operation 
with a risk of morbidity[1,2]. By contrast, adipose-derived stromal cells 
can be isolated from the stromal vascular fraction of lipoaspirate, 
and has been increasingly studied as a rich source of tissue resident 
MSC. In 2001, Zuk et al described this population of culture-derived, 
multipotential MSC from subcutaneous human white adipose tissue, 
termed adipose-derived stromal cells (or ASC)[3]. Since this time, 
ASC have been of great interest to investigators due to their relative 
abundance and accessibility being derived from adiposetissue, in 
contrast to BMSC[3-7]. Unlike BMSC, ASC are also advantageous in 
that they present minimal morbidity[1]. Additionally, ASC proliferate 
easily, expand quickly, and possess stable multipotency through 
multiple passages[3,8-10]. To date, ASC have been studied extensively 
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ABSTRACT
Although bone marrow has long been studied as the primary 
source of mesenchymal stem cells (MSC), adipose tissue has been 
increasingly studied as a rich source of tissue resident MSC. Since 
the first description of adipose-derived MSC, or adipose-derived 
stromal cells (ASC), it has been clear that ASC have significant 
advantages for clinical translation, including increased cell frequency, 
high growth potential, and residence in a dispensable and accessible 
location (subcutaneous fat). Nevertheless, it is increasingly clear 
that ASC differ by anatomic location, although the exact differences 
between anatomic depot are not entirely agreed upon. Striking 
differences exist between subcutaneous and visceral fat depots, but 
even more interesting between various anatomic regions within 
subcutaneous fat. Understanding the specific manners in which 
ASC differ by location is especially important in the context of 
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in the context of bone tissue engineering,with the literature showing 
various strategies that have been implemented to better induce 
osteogenic differentiation in adipose tissue, including the introduction 
of growth factors, different substrates, and even genetic modification. 
For example, ASCcan easily be directed towards osteogenic 
differentiation via growth factor or substrate treatment during cell 
culture with ascorbic acid, β-glycerophosphate, bone morphogenetic 
protein-2, and/or other osteoinductive factors to name a few[11-22]. 
Furthermore, there are a numerous strategies that can be employed 
to achieve genetic manipulation for the purposes of upregulating 
osteogenesis; specifically, the vector and the gene delivery product 
can be selected[23]. For example, among different vectors available, 
viral delivery is a well-studied platform for gene transfer, while non-
integrating methods have also been explored as it addresses safety 
concerns from the former[24,25]. Furthermore, in terms of products 
for viral delivery, these can range from micro (mi)RNAs to bone 
morphogenetic protein (BMPs), some of which are potent inducers 
of osteogenesis[26,27]. Taken together, these studies validate the 
versatility and promising therapeutic potential of ASC in a number of 
applications. 
    Adipose tissue is distributed throughout the body and can be 
categorized into the subcutaneous and visceral adipose depots. The 
visceral depot can be further subdivided into omental, mesenteric, 
retroperitoneal, intrathoracic, and gonadal adipose depots, among 
others[28]. As a result of the numerous studies regarding osteogenic 
properties of ASC, findings have increasingly pointed to the idea 
that adipose tissue harvested from different adipose depots possess 
variable osteogenic capacities, which may be due to the inherent 
characteristics that differ based on anatomical locations such as 
vascularization and cell population heterogeneity[29-33]. While it 
would be most ideal to use a well-identified and homogenous 
population for regenerative therapy, the ASC population remains 
quite heterogeneous[34]. In fact, one of the major limiting factors in its 
clinical application, which includes its osteogenic potential for bone 
regeneration, is its lack of clear parameters to define this stem cell 
population[35]. One of the gold standard approaches currently utilized 
is fluorescent-activated cell sorting (FACS), which uses surface 
markers to select for CD34+ and CD31- for ASCin general[35]. This 
however can present complications since surface markers may 
change from passage to passage, thus lowering overall yield[36]. The 
marker profile may further change with differences in the depot of 
origin. For example, intrathoracic, subcutaneous, and omental ASC 
are strongly positive for CD44, CD73, CD90, and CD29 markers 
with low CD31 expression[32,36-38]. Subcutaneous and omental ASC 
also consistently express high levels of CD105[39,40]. However, ASC 
isolated from pericardial intrathoracic depots had a significantly 
higher proportion of CD34+ cells compared to both subcutaneous and 
omental ASC[32,40] (Please see Table 1 for a summary on cell surface 
markers). Thus, comparative studies have begun to investigate the 
differences in ASC osteogenic potential both within subcutaneous 
depots from varying locations as well as across adipose depots. The 
objective of this review aims to assess the current literature with a 
focus on differences in osteogenic differentiation capacities of ASC 
derived from a variety of adipose depots, among other differences 
including cellularity, gene expression, and cell systems[41].

SUBCUTANEOUS ADIPOSE DEPOTS
A majority of the studies investigating the osteogenic potential 
of ASC have utilized subcutaneous adipose tissue as an ASC 

source due to its relative abundance and accessibility[29,32,33,42-52]. 
Within the subcutaneous depot, a wide variety of ASC harvest 
sites have been assessed, including abdominal[29,32,33,42,45,47,48,51], 
inguinal[49,50,52], thigh[51], dorsocervical[49], flank[51], gluteal[47], arm[51], 
and interscapular[46,52] regions. Even among subcutaneous adipose 
depots, there exists a number of differences including rates of 
proliferation and adipogenesis among other factors[41]. The emphasis 
of this review, however, is the osteogenic characteristics shared by 
these adipose depots. A study by Iwen et al comparing the osteogenic 
differentiation potential across subcutaneous adipose depots 
found that human gluteal subcutaneous (sc-)ASC exhibited higher 
alkaline phosphatase and proliferation rates than the donor-matched 
abdominal sc-ASC after 28 days[47]. Additionally, at this time point, 
mineralization was only present in gluteal sc-ASC, whereas it was 
absent in the abdominal sc-ASC[47]. Similarly, Levi et al found that 
abdominal sc-ASC had lesser osteogenic capacity compared to flank 
and thigh sc-ASC, with flank sc-ASC having the highest osteogenic 
potential, evidenced by alkaline phosphatase staining, bone nodule 
formation, and expression of a wide portfolio of osteogenic gene 
markers[51]. Another study comparing dorsocervicalsc-ASC and 
inguinal sc-ASC discovered that inguinal sc-ASC demonstrated 
superior expression of alkaline phosphatase and osteocalcin[49]. In 
another bone regeneration study utilizingsc-ASC in a large animal 
model (canine), autologous-derived sc-ASC were expanded ex vivo 
and seeded onto a coral scaffold; the cranial bone defect was repaired 
with growth of typical bone tissue in the canine model used[53]. 
Another study tested the efficacy of undifferentiated sc-ASC, as most 
other studies use ASC differentiated in vitro; applied to a scaffold 
in athymic nude rat calvaria, it was shown that undifferentiated 
ASC could still differentiate into osteocytes and osteoblasts given a 
scaffolding material[54]. Overall, although differences in each study 
exist, sc-ASC taken from the lower extremity (inclusive of gluteus, 
flank, thigh, and inguinal region) seem to demonstrate enhanced in 
vitro osteogenic potential.
    Compared to other adipose depots, including visceral[29,42], 
omental[29,32,48], and intrathoracic[32], sc-ASC have consistently displayed 
greater osteogenic potential. Studies evaluating gene expression across 
multiple adipose depots showed that sc-ASC express significantly higher 
levels of the early osteogenic markers Runx2 and collagen I[29,32,42,45,46,48]. 
Furthermore, greater mineralization, osteocalcin, and osteonectin 
were observed in sc-ASC as well[29]. Not only did sc-ASC exhibit 
higher expression of osteogenic markers, but they also proliferated 
and differentiated into osteoblasts faster than ASC from other 
depots[29,33,42]. The more homogeneous cell population of spindle-
shaped morphologies consistent with ASC from subcutaneous 
regions is hypothesized to underlie this difference in osteogenic 
differentiation rate, with the more heterogeneous visceral ASC depots 
exhibiting longer differentiation times[29]. In contrast, one study 
found that sc-ASC showed significantly lower alkaline phosphatase 
activity, proliferation rates, and mineralization than visceral (v-)
ASC in rabbits[33]. However, it is important to note that sc-ASC 
from the same anatomic region in rabbits, rats, and humans did 
not display similar osteogenic potentials; rabbit sc-ASC displayed 
the lowest osteogenic potential out of the three model systems[50]. 
Thus, significant differences across species may complicate ASC 
comparisons. Remarkably, one clinical study has demonstrated 
successful reconstruction of craniomaxillofacial defects in 10 of 
13 cases using human sc-ASC[55]. While sc-ASCshow promise as a 
potential therapy for bone repair, further large-animal studies and 
pre-clinical trials are required before they can be reliably employed 
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clinically for bone repair. 

VISCERAL ADIPOSE DEPOTS
An alternative source of ASC that has been well studied with 
respect to osteogenic capacity includes visceral adipose depots. In 
arecent study conducted by Jung et al involving visceral abdominal 
human ASC, the visceral ASC (v-ASC) were observed to have 
a more heterogeneous morphological makeup[29]. In addition to 
the spindle-shaped cells consistent with ASC, these cell cultures 
also contained contaminating cells, especially fibroblasts and 
mesothelial cells. These other cell types, however, were found to be 
transient in v-ASC cultures, decaying after only four passages. As 
a result of the heterogeneity of v-ASC, osteogenic differentiation 
was observed to be markedly lower than for abdominal human sc-
ASC[29].
    Studies have indicated that the specific tissue source indeed 
plays a role in determining the characteristics for that extracted cell 
population. Specifically, observed variations in proliferation, and 
regulation of adipogenic and osteogenic regulation are notable[42,56], 
and functional differences are hypothesized to be due to differences 
in adipose stem cell. For instance, in terms of adiposity and 
proliferation, the subcutaneous depot exhibited a significantly 
higher level than that for visceral depots, thus yielding better 
organized adipocytes[42]. The human sc-ASC showed increased 
secretion of adiponectin and were more resilient against lipolysis[42]. 
It is further hypothesized that such functional differences may 
be accounted for by metabolic differences observed between 
subcutaneous and visceral sources through a ‘memory’ of the fat 
pad of origin. Interestingly too, this difference does show significant 
correlation to variations in telomere length; in comparison to sc-
ASC, v-ASC actually have been shown to express significantly 
longer telomere lengths which was strongly correlated to patient 
age. However, the differences in depot may be a reflection of the 
shorter telomere length of ASC cells[57]. Finally, one study observed 
a statistically significant difference in fibroblast colony-forming unit 
CFU-F ability between sc-ASC and v-ASC[58]; tissue harvested from 
subcutaneous sites had a yield of 2.3-fold more CFU-F/unit volume 
than those from visceral donor sites, thus indicating differences in 

stem and progenitor cell content[58]. Taken together, in contrast to 
sc-ASC, v-ASC exhibit lower levels of proliferation, adiposity, and 
osteogenic potential along with increased cellular heterogeneity, all 
of which may potentially be attributed to differences in ASC profile 
dependent on the site of origin. With a relatively high heterogeneity 
and markedly lower osteogenic capacity compared to sc-ASC, 
among other drawbacks, v-ASC do not appear to be as promising 
for clinical applications given other sources of ASC available. 

OMENTAL ADIPOSE DEPOTS
The omental adipose depots are a subset of visceral adipose depots, 
which also include mesenteric, retroperitoneal, intrathoracic, and 
gonadal adipose depots[28]. Similar to the visceral abdominal human 
ASC cultures, the omental abdominal human ASC cultures in the 
study done by Jung et al also contained contaminating mesothelial 
cells at earlier time points in culture[29]. In fact, the majority of the 
cell cultures were mesothelial cells, with only a few spindle-shaped 
visceral-type ASC. The presence of the mesothelial cells in omental 
ASC cultures led to lower osteogenic differentiation, consistent 
with the idea that heterogeneous populations of different ratios 
of cell types may affect osteogenic differentiation potentials[29-31].
The mesothelial cells proved to be short-lived, as evidenced by the 
predominantly visceral-type ASC in culture by the fourth and fifth 
passage; however, despite still exhibiting osteogenic differentiation 
potential, past studies have shown that osteogenic differentiation 
potential actually decreases as the number of cell passages 
increases[29,48]. 
    In comparative studies against other sources of fat depots, ASC 
isolated from the omentum exhibit several notable characteristics. 
For example, in contrast to intrathoracic depots which show greater 
levels of adipogenic markers, ASC isolated from the omentum 
demonstrate greater osteogenic markers in culture[56]. Investigators 
believe that this difference is due to the inherent properties of 
such adipose cell progenitors. To account for differences of cell 
types from different depots, flow cytometry analysis was used 
to demonstrate that subcutaneous adipose tissue contained more 
adipose tissue-derived cells while the omentum contained increased 
blood derived cells[43]. Proliferation rates were noted to be similar 

Table 1 Comparison of ASC depots of ease of accessibility, abundance of supply, cell surface markers and other notable features.

ASC Depot Access Supply Notable Features Cell Surface Markers
Subcutaneous

[21566786, 
22628159, 
17654479, 
11573204, 
24361924, 
24669358]

Easy Abundant High osteogenic potential
Greater mineralization
Faster proliferation and osteo-
blastic differentiation
Relatively homogeneous cell 
population
Resilient against lipolysis

CD3- / CD7- / CD10- / CD11b- (99%) / CD13+ (99% ± 2%) / CD14- (100%) / 
CD16- / CD17- / CD19- / CD20 - / CD22- / CD25- / CD29+ (98% ± 1%) / CD31- 
(99% ± 1%) / CD33- / CD34- (72% ± 13%) / CD44+ (60% ± 15%) / CD45- (100%) 
/ CD73+ (89.1%) / CD90+ (96.1% ± 4.2%) / CD105+ (36% ± 9%) / CD106+ (3% ± 
0.7%) / CD166+ (82% ± 18%)  / CD195- 

Visceral Moderate Moderate Heterogeneous cell population 
containing fibroblasts and meso-
thelial cells
Express longer telomere lengths

CD29+ / CD44+ / CD73+ / CD90+

Omental

[22167410, 
24361924]

Moderate Moderate Contain mesothelial cells
Less stiff tissue structure
More vascularized
Higher SVF yield

CD29+ / CD34- / CD44+ / CD73+ / CD90+ / CD105+ / CD166+ (37% ± 17%)

Intrathoracic

[24361924]

Difficult Scarce Spontaneous intracellular lipid 
accumulation
Inferior osteogenic differentia-
tion
Inclined to adipogenic differen-
tiation

CD29+ / CD34+ (pericardial 82% ± 18%; thymic remnant 47% ± 25%) / CD44+ / 
CD73+ / CD90+ / CD166+ (pericardial 60% ± 25%; thymic remnant 72% ± 20%)
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from both depots, although the findings suggest an overall, lower 
differentiation capacity for the omental depot[43]. These findings 
have been confirmed via electrophysiological analysis testing for 
membrane potential and capacitance, again comparing donor-
matched subcutaneous adipose tissue to donor-matched omental 
pads. In another study, a significant difference in proliferation and 
adipogenesis was found in the subcutaneous-derived population[59]. 
Interestingly, in regards to tissue ultrastructure, the omentum 
depot was found to be macroscopically less stiff and even more 
vascularized than those from the abdominal subcutaneous depot. 
Furthermore, omentum provided for a significantly higher stromal 
vascular fraction (SVF) yield[56], which may be explained by the 
presence of more endothelial cells in the vascularized omentum. 
Taken together, the differences in proliferation, adiposity and 
osteogenic potential betweenomentum derived ASC and other 
depots suggest that the origin of the depot has a profound effect on 
the predilection and characteristics of the ASC. 

OTHER ADIPOSE DEPOTS
The buccal fat pad in the oral cavity, also known as Bichat’s fat 
pad, has also been identified as a viable source of ASC[60]. For 
example, Niada et al assessed the osteogenic potential of porcine 
ASC from the buccal fat pad compared to sc-ASC and found 
comparable increases in collagen production, calcified extracellular 
matrix, alkaline phosphatase, and osteonectin[46]. These findings are 
consistent with the findings of another study involving human ASC 
from the same region[45]. Nevertheless, the buccal fat pad presents 
the challenge of being limited in supply, along with difficulty of 
access being in proximity to important neurovasculature. 
    Aside from omental depots, other smaller depots of visceral 
adipose depots, such as retroperitoneal and intrathoracic, have 
not been studied as extensively. One study comparing sc-ASC to 
retroperitoneal perinephric ASC found that the retroperitoneal ASC 
had significantly lesser osteogenic capacity[49]. Similarly, regarding 
intrathoracic adipose depots, human pericardial ASC possessed 
superior osteogenic potential than thymic remnant ASC, though both 
were of inferior osteogenic differentiation capacity compared to 
omental and sc-ASC[32]. Interestingly, ASC from intrathoracic depots 
seemed to be oriented more towards adipogenic differentiation 
even in osteogenic conditions, as seen by spontaneous intracellular 
lipid accumulation, a phenomenon less commonly observed in the 
subcutaneous or omental ASC[32].
    It is important to note that while retroperitoneal and intrathoracic 
adipose sources may function in theory, this does not hold practical 
clinical applications outside of basic biology. A feasible tissue 
engineering approach would not likely utilize such a source that is 
both difficult to access and limited in supply. 

DISCUSSION
The current literature regarding adipose tissue resident MSC (or 
ASC) clearly shows that not all fat is created equally. Clear cut, and 
for the most part reproducible, differences exist in the osteogenic 
potential, adipogenic potential and proliferation of ASC depending 
on their site of origin. How this information should be used is still a 
matter of uncertainty.
    Firstly, differences between sc-ASC clearly exist between anatomic 
sites, with sc-ASC from the thigh/gluteus/flank appearing to be most 
primed to undergo osteogenesis. The reasons for this variation by 
anatomic site are still unclear. Differences in adiposity, vascularity, 
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and relative isolation of superficial versus deep adipose tissue may 
play a role. Nevertheless, larger scale studies are needed to verify 
these findings. In the end, such information is clinically relevant, for 
example, in that a surgeon may have a better foundation for choosing 
materials for tissue engineering applications.
    Even more striking are the differences in differentiation potential 
between sc-ASC and v-ASC. These comparisons are more 
meaningful from a basic biologic perspective, rather than a tissue 
engineering perspective. Certainly, sc-ASC are an obvious first 
choice for any tissue engineering application given their abundance 
and accessibility. Nevertheless, some reproducible differences 
do exist, including lower levels of proliferation, adiposity, and 
osteogenic potential along with increased cellular heterogeneity in 
v-ASC compared to sc-ASC. Furthermore, while studies exploring 
the effects of paracrine and endocrine signaling by ASC are few, 
one study did indicate that adipose tissue do secrete endocrine/
paracrine activity to elicit effects on the skeletal regeneration[61].
Specifically, the endocrine/paracrine activity of some adipose tissue 
consists of bone anabolic factors, which include insulin like growth 
factor binding protein (IGFBP)-2 and WNT10b[61]. Furthermore, 
between omental and preadipocytes, the secrotomes have been 
found to be distinct; the former has been found to induce more 
macrophage and monocyte chemoattraction through Interleukin 6 
(IL-6) and Janus kinase (JAK)-mediated signaling[62]. Subcutaneous 
adipose tissue also had higher production of pro-inflammatory 
cytokines, including IL-6 and IL-8, in contrast to that of abdominal 
adipose tissue[63]. Another study evaluating the effect of origin site 
on angiogenic growth factor gene expression found that there was 
a specific correlation between adipocyte size, which was a function 
of depot location, andvascular endothelial growth factor (VEGF), 
fibroblast growth factor-2 (FGF-2), fibroblast growth factor-10 
(FGF-10), and leptin mRNA levels[64]. In both subcutaneous and 
omental human adipose tissue derived, comparing obese patients 
versus non-obese patients, there was increased expression of tumor 
necrosis factor alpha receptor (TNFR)-60 in the former, which 
correlated with BMI and fat cell size[65-67]. Similarly, it has further 
been hypothesized that this balance between subcutaneous fat 
and visceral fat may influence systemic insulin resistance, likely 
through regulation of TNF[68]. Potential explanations for these 
differences have included the degree of vascularity, composition of 
ASC, presence of contaminating mesothelial cells, and endocrine 
differences with adiposity highly regulated by glucocorticoids[69,70]. 
    While several studies have investigated the immunomodulatory 
capacity of ASC, particularly their role in increasing regulatory 
T cells[71], suppressing T cell function[72-75] and natural killer cell 
cytotoxicity[76], the exact sources of ASC used in these studies remain 
unspecified. While few studies exist elucidating the differences in 
immunomodulatory effects of origin-specific ASC, one study by 
Zhu et al recently demonstrated that ASC derived from omental 
and subcutaneous differ significantly in their inflammatory effects 
due to greater production of chemokines by omental ASC, which is 
responsible for inducing migration of macrophages and monocytes, 
likely through Interleukin 6 (IL-6) and Janus kinase (JAK)-mediated 
signaling[62]. The study also suggests ASC secretion of exosomes via 
identification of typically intracytoplasmic proteins in the culture 
medium[62]. This hypothesis would be consistent with prior findings 
of human ASC-derived exosomes’ immunomodulatory role via 
inhibition of T cell proliferation, differentiation, and activation[72]. 
Similarly, in another study by Cohen et al, various intra-abdominal 
fat depots were found to have distinct immunomodulatory micro-
environments[77]. Specifically, the leukocyte and progenitor 
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abnormalities[94]. On the contrary, an increasing number of recent 
Phase I and IIb studies focusing on the safety of ASC clinical 
application do not identify any significant risks or adverse effects 
in the short term[95]. However, it is important to note that the 
standardization of laboratory practices for ASC is lacking; even 
for MSC, cell proliferation and local inflammation are assessed in 
less than one-third of the manuscripts, and of the safety assessment 
manuscripts, MSC comprise of 85% while ASC constitutes less 
than 15%[96]. Taken together, while some studies report that ASC 
in clinical applications have not shown any significant risks, others 
have shown effects on increased inflammation and cytologic 
abnormalities which would require further investigation. 
    In terms of future direction of ASC therapy, with its discovery 
nearly 16 years ago, research in ASC application has made significant 
progress to provide for a promising stem cell therapy tool[95] and 
interest continues to increase. Regenerative applications of ASC are 
not limited to bone; ASC have been applied to cartilage repair[97], 
cardiovascular regeneration[98], and even hair[99] among other tissue 
types. With such versatility to repair and regenerate various tissue 
types, therapies using ASC has offered a paradigm shift that may 
provide an alternative solution to numerous diseases. With their 
relative abundance and ease of harvest from adipose tissue, ASC 
when combined with other tissue engineering techniques such as 
scaffolds and growth factors provide great promise as a therapeutic 
tool for the future[100], and will hopefully overcome the existing 
limitations surrounding the conventional approaches used in 
reconstruction surgery. 
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