
repair themes in the leading databases were examined. Specific 
emphasis was placed on a broad array of efforts and observations 
concerning articular cartilage and its repair. Articles of historic 
significance and more current strategies designed to foster cartilage 
repair were focused on, and reported in narrative form. Ideas 
extracted from the voluminous literature were those that answered 
one or more of the key questions driving this research. 
RESULTS: Numerous attempts have been made over time to foster 
cartilage repair, using a variety of approaches such as creating 
artificial cartilage, and transplanting stem cells into damaged cartilage 
to promote repair. Most current strategies are forged in laboratories 
and do not always account for the complex disease process, and the 
importance mechanical and inflammatory determinants play in the 
disease. However, manipulating biophysical, and biomechanical 
stimuli favorably is likely to hold promise for attenuating destruction 
of/or for fostering cartilage viability and repair, even in the presence 
of adverse osteoarthritic cartilage tissue changes. 
CONCLUSION: More work is needed to examine the key upstream 
determinants leading to articular cartilage destruction, and to 
enhancing the viability of the tissue. Employing carefully construed 
therapeutic strategies known to impact articular cartilage homeostasis 
safely and effectively can potentially preserve chondrocyte 
homeostasis, either alone or in conjunction with new technologies.

Key words: Articular cartilage, Chondrocyte, Osteoarthritis, Regen-
eration, Repair, Stem cells
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INTRODUCTION
A commonplace view, still widely held today, is that osteoarthritis, 
a chronic disease affecting the articular cartilage lining of freely 
moving joints is irreversible, and once it ensues, its destruction is 
progressive and inevitable. This is surprising given quite a robust 
literature revealing articular cartilage may be amenable to selected 
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ABSTRACT
BACKGROUND: Osteoarthritis, a widespread chronically 
disabling disorder primarily affecting articular cartilage is said to be 
irreversible. Researchers have however, been examining processes 
and methods of promoting articular cartilage repair for some time.
QUESTIONS: Can a case be made for the possibility of restoring 
osteoarthritic cartilage? How advanced is this undertaking? What 
barriers exist in translating basic studies in the clinical realm? What 
physical modalities are deemed efficacious in promoting cartilage 
structure? 
METHODS: All relevant publications detailing articular cartilage 
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reported include the role of cyclic compression and chondrocyte 
function[1], cartilage engineering[5], factors influencing articular 
cartilage and its micro environment, and stem-cell-based articular 
cartilage repair strategies[6,7]. Others are the application of autologous 
chondrocyte implantation procedures[8], and orthopedic surgical 
options for joint cartilage repair[9].
    Among current articles published in the last five years, at least 20 
reviewed the topic in general, or different aspects of the cartilage 
repair topic in narrative, systematic, or metanalytic forms. Among 
the scientific papers, discussed were animal models, human explants, 
clinical studies, preclinical studies, and a wide variety of reparative 
strategies and perspectives, rather than any focused perspective. 

Specific findings
Early observations 
Many current authors recount the longstanding belief that cartilage 
damage is irreversible[10,11], even though research extending back as 
far as the 1920s[12,13] demonstrated the potential for articular cartilage 
lesions to undergo repair. Although the repair process did not produce 
hyaline cartilage, sources for repair including mesenchymal tissue 
of synovial origin, and of subarticular origin were evidenced[14]. 
Others found that cartilage defects sufficiently small and located 
solely in the cartilage superficial and intermediate zones were able 
to heal consequent to their increased proliferation and synthesis 
of matrix[15-17]. In related work, and contrary to established beliefs, 
long term organ cultures of mature adult chondrocytes damaged 
chemically were able to mount an active regenerative phase of matrix 
repair[16]. 
    In addition, in 1958, Urist[18] found varying degrees of articular 
cartilage repair in post arthroplasty cases examined at 18 months 
to two years, including observations of hyaline cartilage. Similarly, 
8/14 cases followed post osteotomy for medial knee osteoarthritis, 
were found to exhibit cartilage regeneration verified by arthroscopy 
and cartilage punch biopsy. Later Salter et al[19] noted that full 
thickness defects healed more rapidly and completely if subjected to 
intermittent active motion, as did Burr et al[20] using an animal model 
exposed to intermittent muscle contractions of the thigh.
    Along with surgical osteotomy that can offset cartilage 
deterioration and occasionally promote its healing[21], Bland[22] who 
reviewed the status of knowledge at that time concluded that the 
process or sequence of events resulting in osteoarthritis is subject to 
arrest and possibly spontaneous reversal if initiated at an early disease 
stage. Turnquist et al[23] on the other hand, found there was complete 
reversibility of joint degeneration in monkeys if they underwent a 
period of immobilization, followed by period of gradual activity, as 
did Tammi et al[24]. 
    Other results revealed chondrocytes were able to mount selected 
aspects of repair in the context of cell cultures[25], and could respond 
metabolically to selected mechanical stimuli[26]. Others showed 
articular defects of old chickens could regenerate using embryonic 
chick chondrocyte implants[27], and that low frequency pulsed 
electromagnetic fields had a biological modifying effect on cartilage 
chondrocyte activity, as did certain hormones, medications, enzymes, 
and insulin. At around the same time, efforts to regenerate cartilage 
from chondrocytes cultured on variously shaped polymer scaffolds 
showed an initial rapid cell growth was possible followed by a 
slower growth period involving matrix product formation[28]. Other 
approaches are well described by Anz et al[29] and include but are 
not limited to: (a) Non-operative treatment with ‘‘proliferative’’ 
or sclerosing agents; (b) Surgical treatment or debridement of the 
osteoarthritic joint; (c) Prolotherapy ot injecting a sugar solution 

degrees of repair under certain conditions, and that articular cartilage 
cells or chondrocytes do attempt to mount a reparative process when 
injured in some way. Moreover, other joint structures implicated in 
osteoarthritis that are amenable to repair, such as bone, may impact 
articular cartilage reparative processes quite favorably, and episodes 
of spontaneous articular cartilage repair are not unknown. 
    However, in light of the limited capacity for mature cartilage cells 
to divide, and the fact that cartilage has no direct vascular supply, 
the view that cartilage repair is unlikely to ensue without some form 
of cell-based intervention or stimulus is widespread. Moreover, the 
quality of any reparative tissue is often less than desired to offset 
further osteoarthritic joint damage. To allay the pain and dysfunction 
associated with articular cartilage damage, many researchers of late 
have sought and are seeking mechanisms to either promote more 
optimal repair of the damaged articular cartilage though artificial 
strategies, using a variety of physicochemical and biomechanical 
stimuli, or opportunities to replace the damaged tissue with a viable 
substitute[1].
    Related questions arising in this sphere are consequently - what 
strategies are potentially suitable for fostering articular cartilage 
repair or aiding in an intrinsic reparative process? Will the artificial 
production off articular cartilage resemble normally structured 
hyaline cartilage, a composite of articular chondrocyte cells or 
chondrocytes and a complex intercellular matrix of collagen and 
proteoglycan derivatives and other elements? And under what 
conditions will a reparative process take place or be prevented?

METHODS
To provide some insight into these and related questions, a specific 
search on Web of Science that covers five databases, as well as 
PubMed was undertaken for time periods be 1925-2017, with a focus 
on years 2013-2017 up to and including April 15, 2017. These data 
were categorized as representing either historic data or contemporary 
data and the former were only briefly discussed in order to provide 
a context for the more current work in this realm. Key words used 
were articular cartilage repair and osteoarthritis, articular cartilage 
regeneration, cartilage repair, articular cartilage regeneration 
and physical therapy, and articular cartilage repair and pulsed 
electromagnetic fields, a physical modality showing promise for 
fostering cartilage repair. 
    Articles alluding to osteoarthritis pathology, and articular cartilage 
physiology were also sought in an effort to provide a well-rounded 
picture of the continuing discourse in this field of endeavor.
    Osteoarthritis is a prevalent highly disabling disease affecting older 
as well as younger adults. In the absence of any successful targeted 
therapy that would attenuate or foster reversal of the osteoarthritic 
process[1], the topic of articular cartilage repair is currently of great 
interest with more than 5,500 citations regarding this topic in recent 
years. 
    In this respect, the present paper was designed to simply offer a 
brief snapshot of some relevant past and present research that has 
examined the topic of articular cartilage, believed to be the tissue 
most damaged in painful disabling osteoarthritis, in terms of its 
regenerative capacity.

RESULTS
The literature search revealed many related works, mostly dealing 
with the cellular aspects of cartilage repair[1,2], factors influencing 
cartilage biomechanics and chemistry[1], magnetic stimulation and 
cartilage tissue engineering[1,3] and preservation[4]. Other topics 



into injured tissue; (d) Closely spaced multiple drilling of arthritic 
articular cartilage defects; (e) Microfracture of bone. 
    Although findings were variable, those described above and 
others[30-32], tended to indicate the chondrocyte was not an effete cell, 
and that following damage to mammalian joint surfaces[33], repair 
tissue might be generated, and at times, this might resemble hyaline 
cartilage under favorable conditions[16]. Indeed, after undertaking a 
very careful review of articular cartilage repair process literature in 
1998, Newman[15] stated that the centuries-long belief that articular 
cartilage was unable to heal seemed highly dubious and about to fall.

Contemporary observations
Among the voluminous array of studies and data that have prevailed 
over the last three decades in the context of articular cartilage repair, 
as outlined in a report by Carlos-Rodriguez-Merchan[2] most have 
focused on the use of cartilage therapy to improve the opportunities 
for repair of focal articular cartilage lesions, rather than conservative 
efforts to promote natural healing directly. No broad theory seemed 
to guide the research however, and among the 44 reports reviewed 
by Merchan[2] an array of studies dating from 2006-2012 revealed 
a wide variety of diverse reparative approaches were used over this 
time period. These involved various attempts at articular cartilage 
repair using gene-activated matrices, autologous implantation 
of chondrocytes, meaning the use of chondrocytes taken from 
the host, biological approaches, stem cell implants, and various 
chondroprotection strategies, and models, experimental methods, 
time frames, outcome measures, and related methodologies that were 
truly not comparable in this body of research. 
    Nontheless, none achieved the desired result, and among the 
key factors found to influence the reported outcomes were: the 
method employed to enhance repair, the site in question, and the 
age of the candidate or animal. While no definitive approach was 
deemed superior to any other, most relied solely on some form of 
implantation, even though careful attention to mechanisms of joint 
usage, along with the importance of inflammation control, and 
acknowledging the cause and extent of the condition, may be crucial 
outcome determinants[15,16]. Mediated by multiple pathological 
mechanisms, including extracellular degradation, impaired formation 
of new matrix, and abnormal activation of cartilage cells[34], other 
current approaches advocated for advancing cartilage repair put 
forth included the use of viscosupplementation, neutroceuticals, 
nanoengineered biomaterials[35,36], various growth factors[37], 
microfracture surgery whereby holes were drilled in the subchondral 
bone to promote small defect healing[6], and low intensity 
ultrasound[38], but again none achieved the desired result. 
    Newer surgical approaches designed to restructure or emulate 
the complex architecture of articular cartilage have since emerged. 
These generally attempt to employ scaffolds constituted by a variety 
of synthetic materials[6], single stage cell implants, gene therapy 
and stem cell implantation[11], and implants of presumably healthy 
chondrocytes from non-load bearing joint sites[6]. Other more passive 
possible approaches include the application of targeted cartilage 
matrix degradation and bone remodeling strategies, the targeting of 
any prevailing inflammation, dysfunctional skeletal muscle, adipose 
tissue and the inflammatory environment caused by adipose tissue[39], 
and platelet promoted cartilage repair[40]. 
    Also discussed in efforts to maximize repair of articular tissue that 
resembles hyaline rather than fibrocartilage is the utilization of tissue-
engineered nasal chondrocytes[41] and extracellular matrices that act 
as a natural scaffold and promote cell attachment, while maintaining 
a stem cell niche[6]. As well, the use of osteoarthritis-derived 
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chondrocytes as a potential source of multipotent progenitor cells 
rather than autologous chondrocyte implantation[34,41,42], which is not 
able to fully restore functional hyaline cartilage[1] has been advocated. 
In addition, resurfacing damaged articular cartilage using tyramine-
substituted sodium hyaluronate and riboflavin[43] has been proposed, 
along with the use of growth factors[1]. 
    More novel current ideas involve using microRNAs as possible 
targets for articular cartilage engineering[44] along with mesenchymal 
stromal cell-based therapy using stem cells extracted from bone 
marrow, adipose tissue, or other sources[45]. The use of human 
embryonic stem cells treated with bone morphogenetic protein 2 and 
Wingless-Type MMTV Integration Site Family, Member 5A (Wnt5a)
[46], along with vitrified-thawed chondrocyte sheets[47], are additional 
potentially useful strategies. 
    In addition, among various physical modalities that have been 
applied to foster articular cartilage repair, pulsed electromagnetic 
fields, have been found to have unique effects on articular cartilage 
tissues[1] and appear beneficial in fostering the differentiation of 
human mesenchymal cells into chondrogenic cells, as well as for 
reducing inflammation and impacting bone health in a positive 
manner[3]. Employed therapeutically as magnetic nanoparticles, 
these fields may also have the potential to foster better extrinsic 
control over tissue engineered structures in the context of cartilage 
regeneration strategies[48]. Other potential strategies identified as 
promising in the literature are efforts to identify cartilage regeneration 
promoting genes, increased efforts to explore the relationship between 
cartilage healing and protection from osteoarthritis after trauma, and 
modulation of inflammation by drugs, and/or Wnt pathway activators 
and inhibitors thought to be implicated in the context of cartilage 
repair[49]. See Table 1 for selected examples of the diverse approaches 
reported in the current literature, including ultrasound therapy, laser 
therapy, electrical muscle stimulation, exercise, passive motion, and 
microcurrent stimulation that all appear promising.
    As recounted above there is thus no shortage of research efforts 
directed towards trying to emulate or mimic the original articular 
cartilage structure and function in cases where degeneration has 
ensued, as well as attempts to stimulate intrinsic repair. Yet, more 
often than not, almost all such attempts to manipulate or produce 
artificial cartilage exogenously have failed to generate durable 
articular cartilage[50], with properties similar to hyaline cartilage[1], 
with no singular method yet being shown to be superior to any other 
in the clinical realm. This may be because numerous factors must 
clearly be considered and in place in efforts to foster functional 
articular cartilage regeneration processes. These factors include, but 
are not limited to the nature of the tissue microenvironment[1], intra-
donor variability of autologous articular chondrocytes, problems of 
cell retention at the implantation site[27], formation of fibrocartilage 
or portions of cartilage located in fibrous tissue[27], and effects of 
the reparative strategy on subchondral bone, implicated in the 
osteoarthritic disease process[41]. 
    Other factors are the limitations associated with the development 
of biocompatible scaffolds that can foster stem cell growth, plus the 
use of growth factors that can enhance chondrogensis[1], which must 
match the native tissue structurally and functionally[41].
    The structural and mechanical complexity of articular cartilage[1] 
can also hamper the desired differentiation of chondrocytes and their 
ability to maintain or produce an optimally durable cartilage matrix 
structure and function[7], as well as efforts to prevent cell death at the 
defect margins when the constructs are placed into the host tissue[1]. 
Other influential factors are initial seeding density[28,52], location-
specific differences in natural healing responses of chondral injuries, 
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Table 1 Diverse promising cartilage repair strategies published in the last 5 years [*=physiotherapeutic type strategies].

Research Group Cartilage Repair Approach

Almeida et al [69] Anisotropic shaped-memory alginate scaffolds with either Type I or II collagen

Bonasia et al [67] Autologous adult, allogenic juvenile, and combined juvenile-adult cartilage fragments

*Boopalan et al [47] Pulsed electromagnetic fields

Broguiere et al [70] Factor XIII cross-linked hyaluronan hydrogels

Chang et al [102] Cell free porous poly graft implants plus early loading exercise

Corradetti et al [73] Chondroiten sulphate immobilized on a biometric scaffold

Choi et al [72] Small molecule with sulfonamide

Chen et al [71] Superabsorbant 3D scaffold based electrospun nanofibers

Donnelly et al [42] Photo cross linked tyramine-substituted hyaliuronate hydrogels with tunable mecjanical properties

Driesen et al [54] Chondrocyte cellular reprogramming

Embree et al [76] Use of fibrocartilage stem cells

Gupta et al [76] Adult human bone marrow-derived cultured, pooled, allogenic mesenchymal stromal cells

Karlsen et al [77] Forced expression of micro-RNA 40

*Kwon et al [78] Electrical stimulation

Latief et al [79] Adipose stem cells differentiated chondrocytes

Maruki et al [80] Collagen vitrigel incorporating TGF-B1-cell free method

Meng et   al. [81] Peritoneum derived a cellular matrix combined microracture

Nam et al [82] Cord blood derived pluripotent stem cells

Park et al [83] Allogeneic mesenchymal stem cells and hyaluronate gel

Pot et al [84] Implantation of a cellular biomaterials after bone marrow stimulation

Ramakrishnan et al [85] Injectable and 3D bioprinted polysaccharide hydrogels

Ruta et al [8] Bone marrow stimulation, whole-tissue transplantation, and cell-based surgical strategies 

Sakata et al [86] Platelet rich plasma injections

Sartori et al [87] Bi-layered scaffold and ‘bioinspired’ approach

Shi et al [88] Adipose-derived stem cells co cultured with chondrocytes

*Wiegant et al [89] Joint distraction

Vega et al [90] Hydrogels as a promising scaffold for cartilage engineering

*Tan et al [4] Ultrasound

Yamaguchi et al [90] Mesenchymal stromal cell injection combined with pulsed ultrasound

*Zati et al [92] Nd: YAG Laser Therapy

and donor age when employing autologous chondrocyte implants[52]. 
Others are the use of invasive procedures required to extract 
mesenchymal bone derived stem cells[34], defect size[1,52], other injury 
characteristics[9], and those problems associated with autologous 
chondrocye implantation outlined by Oda et al[42]. 
     Other mediating or moderating factors that may affect both artifical 
cartilage repair as well as efforts to stimulate damaged cartilage in 
the in vivo situation include the extent of prevailing intermittent 
compressive forces[28], and influential factors specifically associated 
with applying growth factors to regulate chondrocyte proliferation, 
including undesired side-effects such as inflammation and osteophyte 
formation, unwanted osteogenic differentiation, the short half-
life of these factors, and the high costs involved in producing and 
maintaining these products. The use of growth factors in combination 
with scaffolds or decellularized extracellular cartilage matrices, 
although a potentially useful mechanism for mimicking the structure 
and biology of articular cartilage, is also potentially problematic since 
not every element of native healthy cartilage is optimally represented 
in the synthetic microenvironment[1]. 
    According to Lee et al[53] the initiation of chondrocyte self-
assembly, which has emerged as a robust scaffold-free engineering 
methodology still requires an intact cytoskeletal network, and the 
conditions for the formation and maintenance of biologically and 
functionally appropriate tissue in vitro must be pre determined[28]. 
Repair of articular cartilage also requires a sufficient number of 
chondrocytes to replace the defect[54]. In this respect Duan et al[55] 

found a composite based on a novel biphasic scaffold combined 
with bone marrow stem cells showed a high potential to repair 
large osteochondral defects in a canine model, as did Yoon et al[58] 

when applying a biphasic scaffold loaded with a combination 
of a chemokine and bone marrow concentrate to foster tissue 
regeneration in knee articular cartilage of beagles with cylindrical 
osteochondral defects, but this was not tested in patients with an 
osteoarthritic condition. Alternately, the beneficial use of scaffold 
free transplantation of chondrocytes has also been discussed, but 
its application remains to be demonstrated[59]. Studies that have 
examined physical modalities including exercise in the context 
of fostering regeneration of articular cartilage explants, cell 
transplantation therapy, chondrogenisis of mesenchymal stem cells, 
or damaged cartilage in a variety of animal models, or in vitro 
situations, may not replicate the human situation at all well, and may 
be conflicting or show that bone rather than cartilage is the tissue 
benefited. In the more positive study by Zati et al[92] who examined 
treatment of cartilage defects by Nd: YAG laser, patients who 
benefited were young, and had moderate, rather than severe cartilage 
damage.

DISCUSSION
For over a century researchers and scholars have carefully examined 
and discussed and debated the potential for articular cartilage to heal 
in cases where the tissue is damaged or destroyed. The importance of 
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this issue, which stems from the widespread disability associated with 
the joint disease known as osteoarthritis, wherein articular cartilage 
pathology is a key component, remains, however, despite voluminous 
efforts over the past three decades to ameliorate this disabling disease 
via extrinsic and intrinsic cartilage repair strategies. However, even 
if one accepts articular cartilage has some reparative potential, this 
remains generally less than desirable, and is only partially assisted 
by past and current efforts to test and develop strategies to repair or 
regenerate the synovial joint surface if it is destroyed in some way.
    This challenge is basically no simple task, given the complex 
processes involved in cartilage homeostasis, and maintenance, as 
outlined very briefly in this summary review. As shown in Table 
1, many interesting options thus continue to emerge in the current 
literature. Popular approaches include - but are not limited to- gene 
therapy, hyalinization of repair tissue using growth factors, the use 
of stem cells, scaffold-free cartilage-like cell sheets, osteochondral 
allografts, and pulsed electromagnetic fields[2,3,8,11,54,59,60]. None are 
superior however, none have been shown to have long term benefits 
in the context of large cartilage defects, and some have only been 
examined in animal models, selected joints, osteoarthritic conditions 
with artificially created defects that may not emulate the natural 
disease process, or in a variety of explants in the laboratory.
    Moreover, in light of what we know about articular cartilage 
physiology, its shock-absorbent and lubricating property[85], and 
its dependence on loading for nutrition and lubrication, plus the 
fact that this tissue is not uniquely involved in the pathogenesis of 
osteoarthritic joint disease, nor is it a structurally homogenous tissue 
unit, it is possible no singular extrinsically manufactured approach 
alone can achieve the desired result, no matter how sophisticated. 
In addition, without careful simulations of the osteoarthritic 
environment, where chondrocyte assemblies may be selectively or 
collectively disrupted, and proinflammatory mediators and infiltrating 
cell populations may induce chronic inflammation[73], efforts to 
fully restore damaged articular surfaces and its structure, may still 
fail, unless these are carefully construed[56]. Indeed, in recognition 
of the multiple biochemical and physiological processes within and 
surrounding articular cartilage in both healthy and osteoarthritic 
joints, the importance of understanding the role of inflammation in 
this disease, plus differences in disease origin, and impact of aging 
on all these processes renders the challenges in this realm highly 
complex. 
  Other limitations of current repair interventions for articular 
cartilage regeneration include the challenges in applying various 
scaffolds, including their controllability, actuation, and response 
properties[1,48]. The stage of the disease, the health status of the 
candidate, the nature, location, and extent of the defect, plus the 
choice of cell or cell fragment mix, as well as differentiation medium 
and scaffold stimuli[87] used for repair[56] are also other highly salient 
issues that have not adequately simulated in any laboratory to 
date, despite new developments that are being investigated[87]. As 
well, the persistent belief in a limited natural capacity for articular 
cartilage regeneration[9], despite early observations from a variety of 
laboratories to the contrary, in addition to the paucity of case studies 
and clinical data, is another potentially insurmountable barrier for the 
current patient. 
    Alternately, more advanced efforts to examine the most appropriate 
stem cell transplant methods that can be applied in conjunction 
with carefully designed environmental regulation strategies and that 
map the configuration of any defect may prove helpful[1], as may 
the use of tailored injectable hydrogels designed to promote long-
term functionality and hyaline cartilage construction[85]. Follow up 

analyses that examine the structural, and mechanical properties 
of the transplanted tissue using objective approaches, including 
weight bearing radiographs, serum biomarkers[56], nano-engineered 
biomaterials proposed to mimic tissue interfaces[35], and examining 
whether osteoarthritic like processes resurface or not – along with an 
examination of the functional longevity of a graft over an extended 
time periods would also be more helpful than not in all likelihood[56].
    Finally, re examining earlier observations of spontaneous joint 
space recovery[61], and others strategies that produce good to 
excellent clinical results, such as arthroplasty surgery[18], osteotomy, 
tenotomy[62], free periosteal grafts[63], drilling of the subchondral bone 
plate, carbon fiber plugs, perichondral grafting, and electrical, and 
magnetic interventions[57,60] and comparing these results to current 
and future tissue regeneration and implant efforts may permit a more 
comprehensive set of clinical opportunities for the patient. Ensuring 
that joint loading is carried out incrementally, inflammation is 
controlled, and practicing standard joint protection strategies before 
and after any surgical repair attempt is strongly indicated as well.

SUMMARY
For many years, it was assumed articular cartilage, a key source 
of pathology in adults with osteoarthritis, could not regenerate or 
undergo repair. While this does not occur readily, or spontaneously[37], 
careful observation demonstrates that this premise is not consistently 
valid, and that the site of injury, as well as the magnitude of injury, 
may be critical[66].
    Indeed, a large body of related research shows long-term, as well 
as effective short-term strategies can clearly foster cartilage repair[2], 
including the use of cartilage from alternative sources, and growth 
factors[2]. As well, the application of appropriately timed biophysical 
stimuli when engineering neocartilage[7], and one less well studied 
related topic, examining upstream factors that can be harnessed to 
protect articular cartilage may help to avert progressive cartilage 
deterioration and degradation, and/or to produce functional cartilage. 
As well, the possible use of multiple, rather than single therapeutic 
strategies to attenuate the disease process[15], including joint 
protection efforts in the face of attempts to stimulate neocartilage 
might prove especially helpful, as might careful mechanical or 
electrical stimulation of the affected osteoarthritic joint or both[102-112].
    Most problematic though is that despite the highly complex 
interaction of mechanical, biological, chemical, and physiological 
processes that impact osteoarthritic articular cartilage structure, and 
that involve bone, and several structural changes in the extracellular 
matrix, most current molecular oriented research efforts along with 
those in animal models do not consider the interaction of these 
factors in the context of their cartilage regenerative efforts. Signaling 
cascades involved in limb patterning that may play a role in cartilage 
repair also remain to be elucidated, as do the role of stem cells and 
mature chondrocytes in osteoarthritis progression[93]. Consequently, 
no matter how sophisticated the current tissue engineering strategies 
and others may be, without careful consideration of the individual 
and collective influence of joint biomechanics, biological and 
biomechanical cartilage cellular and intracellular transduction 
pathways, and extent and severity of any lesion, as well as its cause, 
it seems reasonable to propose that no single uni-dimensional 
approach, no matter how sophisticated, is likely to yield any desired 
long-term effect to restore authentic articular cartilage in its optimal 
architectural, biomechanical and biochemical form[1,11,56].
    As outlined by Fitzgerald[49], adult articular cartilage has a poor 
capacity to undergo intrinsic repair, and despite an array of potential 



strategies developed to hasten intrinsic cartilage repair, strategies for 
fostering repair of large cartilage defects remain unsatisfactory. To 
restore cartilage with the same resistance to biomechanical loading 
as authentic articular cartilage that does not degrade over time, 
possible approaches applied in light of the complex osteoarthritic 
process that involves enzymatic degradation, pain, joint swelling, 
cartilage fragmentation, or softening, are care to protect an 
osteoarthritic joint from excess impact, while not favoring complete 
immobilization. Others are, eliminating or reducing any obvious 
structural deformities, maximizing muscle and joint function, careful 
placement of any implants, and in recognition of the structure of the 
diseased tissue, possible enzymatic control to reduce immunogenic 
responses[64]. The use of weight-bearing activities that match the 
repair tissue biomechanical properties[65], pulsed electromagnetic 
fields and other remedies to quell pain, and joint swelling, in 
addition to harnessing the multilineage differentiation capacity of 
osteoarthritis multipotent progenitor cells[42], or mixing adult and 
juvenile cartilage fragments[67] and introducing early exercise loading 
following graft implantation[102], laser therapy[104-108], may also favor 
the initiation of desirable chondrocyte reparative processes. 
    Highly promising too are the application of relevant magnetic 
stimuli that can affect calcium signaling and mechano transduction 
positively[1], along with efforts to limit excess damage in those with 
diminished joint sensitivity, excess joint effusion, and unstable joints. 
Bio-imaging to monitor stem cell to chondrocyte differentiation 
processes[65], the use of magnetic nanoparticles[48], exercise[102-104], 
and regenerative therapies that are carefully staged and of sufficient 
intensity and duration and tailored for each product may also help to 
foster maximal results[68]. 

Future directives that may be especially helpful are:
1. Developing a better understanding of load-induced biophysical 

changes and trigger mechanisms as this impacts early 
osteoarthritis damage, and how biomechanical stimuli can be 
harnessed to promote chondrocyte cell function remain highly 
relevant issues in the context of articular cartilage regeneration, 
restoration, or repair efforts[1,56].

2. Exploring how to integrate stem cell biology, mechanobiology, 
and chip technology[5].

3. Strategies to mimic the structural and bioactive conditions 
of articular cartilage using growth factors and biocompatible 
scaffolding may further enhance the pursuit of regenerative 
therapies in the field[1,93], as may implantation of acellular 
biomaterials[84], co culturing chondrocytes with stromal vascular 
fraction cells of adipose tissue rather than with autologous 
chondrocytes[92], employing muscle derived stem cells[95], intra-
articular injections of autologous expanded bone marrow[96], 
use of a pyrolytic carbon implant for reconstruction of a focal 
cartilage defect[97], platelet activated serum and plasma[98,99] 
and Interleuken-8 and bone marrow concentrate to upregulate 
chondrogenic transcription[100].

4. Efforts to examine and integrate promising physical 
modalities into the cartilage repair paradigm, such as laser 
light applications, ultrasound, pulsed electromagnetic fields, 
electrical stimulation, active and passive exercises[102-115].
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