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INTRODUCTION
Low intensity pulsed ultrasound (LIPUS), a non-thermal form of 
physical stimulation found to impact bone healing positively[1-3], is 
associated with possible favorable mechanical and biochemical ef-
fects on the process of endochondral ossification, as well as articular 
cartilage chondrocyte cell metabolism[2,4]. Since osteoarthritis, an 
incurable widespread debilitating joint disease where articular car-
tilage damage predominates remains an immense global health and 
socioeconomic issue, the use of LIPUS in fostering articular cartilage 
chondro-protective or reparative effects has hence been studied for 
some time. As recounted by Vaughan et al[5] and Rothenberg et al[6], 
in addition to the successful current clinical applications of ultra-
sound in various forms, several laboratory investigations conducted 
over several decades have shown LIPUS to produce favorable effects 
on cartilage matrix properties and expression[7], including favorable 
impacts on scaffold-free cultured chondrocytes[8] as well as gene 
expression in chitosan scaffolds[9] and 3D matrices[9]. Other studies, 
however, found the favorable impact to be only of temporary signifi-
cance[8], while others found no significant effect[8], or emergent effects 
only after prolonged stimulation periods[10]. Yet, LIPUS has been 
shown to impact synovial inflammation[11], increase vascularity in 
erosive cartilage[12], and to potentially decrease the extent of cartilage 
histopathology[7], while potentially accelerating soft tissue and bone 
healing processes[6].
    At the same time, other favorable effects on muscle, and tendon, 
as well as inflammatory processes, imply that LIPUS applied to 
offset or treat osteoarthritis, the most prevalent joint disease, might 
be especially helpful in creating a favorable cartilage environment, 
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ABSTRACT
Low intensity pulsed ultrasound [LIPUS], a physical modality that 
has demonstrated utility in bone healing contexts including non union 
fracture situations has been proposed to also impact articular cartilage 
chondrocyte cell metabolism in a favorable way. This current review 
focuses on two questions: a) whether LIPUS produces any clinically 
significant impact on chondrocyte structure or function; b) whether the 
impacts observed support a role for LIPUS in efforts to foster cartilage 
regeneration and healing applications. Drawn from the English 
language literature published over the last 35 years, the majority of the 
available basic or preclinical studies presently reviewed demonstrate 
LIPUS applications to consistently yield favorable cartilage 
chondrogenic responses, regardless of substrate, and to be worthy of 
further exploration in the clinical realm for promoting much sought 
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and/or for attenuating or reversing its predicted rate of deterioration 
in the face of limited current intervention approaches. Moreover, 
a biophysical modality that could be applied in the home or clinic 
and one that is safe and non-invasive, while positively fostering 
articular cartilage repair or limiting or slowing rates of its further 
damage, would undoubtedly be of immense value when considering 
the impact of the magnitude of the suffering presently encountered 
worldwide by osteoarthritis sufferers, as well its profound economic 
and social disease costs, when considering the limitations of available 
drugs, and resultant burgeoning surgical demands among aging 
populations. It might also impact the opioid epidemic to some degree 
which prevails in part due to the failure of medicine to relieve chronic 
osteoarthritic pain effectively without narcotics. Its thoughtful 
application may also provide a mechanism for fostering more direct 
drug delivery to chondrocytes, while positively affecting chondrocyte 
intracellular ion transport, cell signaling, and gene expression 
processes. 
    In light of the limitations of cartilage to heal, and the possible 
favorable use of LIPUS to induce disease modifying conformational 
changes within and around osteoarticular cartilage chondrocytes, this 
brief aimed to explore the past as well as recent data concerning the 
possible utility of LIPUS for fostering osteoarthritic cartilage repair, 
as well as for fostering seeding processes with respect to articular 
cartilage regeneration efforts, ideas accepted by several researchers, 
but not all[13]. 
    Key questions currently focused on in this review are a) whether 
LIPUS produces any uniform trend or significant impact on 
chondrocyte structure or function; b) whether the impacts observed 
support a role for LIPUS in efforts to foster clinical cartilage 
regeneration and healing applications in osteoarthritis related realms. 

METHODS
Desired research publications were sought primarily from the 
PUBMED, Science Direct, Scopus, Academic Search Complete, 
and EMBASE data bases. Acceptable articles were those that 
specifically focused on the impact of LIPUS on articular cartilage, 
regardless of source, and only preclinical studies were examined as 
a basis for ascertaining a possible need for further research in this 
realm, and the possible direction of this. No restriction was placed 
on the disease model, method or substrate employed, or research 
design, but outcomes examined had to reflect upon some relationship 
between LIPUS applications and chondrocyte function or cartilage 
composition in either healthy or diseased or damaged tissue states. 
Years of specific interest were those extending from January 1 
2015 - May 1, 2019 using the key words articular cartilage and 
low intensity ultrasound [LIPUS], however, all publications 
published over the last 35 years and deemed eligible were screened, 
and accepted for further analysis after it was clear they fulfilled 
the current eligibility criteria. Background data on this topic were 
also reviewed, as were relevant items from other sources such as 
CINAHL, along with relevant citations of certain articles in an 
effort to ensure the inclusion of the most important and available 
topical data in this scoping review. Excluded were studies that did 
not address the key questions underpinning this review, including 
other biophysical modalities, studies on clinical samples, and non-
English studies and English abstracts. Items published prior to 2015, 
and those dating from 2015 were tabulated separately, to better 
discern trends over time, and all were subjected to examination and 
narrative review, where applicable. No systematic meta-analyses 
were conducted given the limited number of comparable studies of 
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any type in this emerging field. 

RESULTS
The present review, which embodied almost all published data in the 
English language peer reviewed data bases over the past 35 years, 
revealed that ultrasound, a physical modality used clinically for 
many years[6] and that can be delivered in various modes, including 
a low frequency pulsed mode, quite consistently produces observed 
cellular responses that would appear favorable to articular cartilage 
chondrocytes examined either in cell cultures, or in the context 
of animal models of osteoarthritis (Tables 1-3). As outlined in 
PUBMED, a leading data base, with a total of 287 related papers 
published over the last 30 years using the terms low intensity 
ultrasound [LIPUS] and cartilage alone; with 95 of these publications 
having been listed in the past 5 years, this is an area of high ongoing 
interest. While very few clinical studies on this topic prevail, among 
the published preclinical studies, which include both outcome as well 
as explanatory approaches, Table 1 highlighting the most relevant 
background publications published prior to 2015, consistently 
shows LIPUS applications of differing doses to yield more favorable 
outcomes than not, regardless of substrate, as far as allaying 
osteoarthritis cartilage based disease progression in one or more 
potential ways. Further demonstrated is the considerable promise for 
LIPUS based laboratory efforts to foster cartilage repair or develop 
synthetic cartilage using LIPUS technology. In addition, those studies 
fulfilling the present review criteria and portrayed in Table 2, which 
are the more recent studies on this topic and that involve the use of 
cellular or explant substrates to identify and examine chondrocyte or 
stem cell responses to LIPUS applications, similarly show favorable 
results as a whole in the context of the topic of articular cartilage 
repair, along with notable plausible mechanisms of action to explain 
it apparent efficacy. As well, Table 3, housing those most recent 
LIPUS studies employing various animal models of osteoarthritis 
likewise provides fairly solid supportive evidence of the potential 
for LIPUS to favorably impact osteoarthritic chondrocytes, and 
cartilage structure and function, and to mediate this via several well 
established mechanistic pathways and cell functions known to be 
clinically salient as far as allaying osteoarthritis cartilage-based 
disease progression is concerned. Most striking is the considerable 
promise shown by LIPUS applications for reversing osteoarthritis 
pathology, laboratory efforts to foster cartilage repair, its ability 
to heighten other regenerative approaches synergistically, and for 
developing or enhancing synthetic cartilage, especially in the context 
of human chondrocytes, stem cells, and diseased osteoarthritis 
chondrocytes (Tables 1-3).
    In addition to the above examples, and despite the lack of 
parallel clinical evidence, the past as well as the currently emerging 
LIPUS associated data are believed to hold considerable promise 
as regards cartilage repair[41,42]. In particular, very similar LIPUS-
related chondrogenic effects are seen regardless of substrate, such as 
mesenchymal stem cells[20], and even among human osteoarthritic 
chondrocytes[19], as well as those substrates derived from well-
accepted animal models of osteoarthritis[17,19,29]. Importantly 
positive metabolic outcomes have also been observed, even 
among osteoarthritic explants[19] and animal models of idiopathic 
human osteoarthritis[17], and when normal animal activity has been 
permitted[21], and among mesenchymal stem cells, LIPUS promotes 
chondrogenesis even in the absence of Transforming Growth 
Factor-B[20], normally required to promote chondrogenesis in these 
cells[20]. 



1153

M
arks R. Low

 Intensity Pulsed Ultrasound and Articular Cartilage Repair
Table 1  Selected studies published prior to 2015 concerning low intensity pulsed ultrasound  (LIPUS) and articular cartilage and joint related effects. Highlighted studies** are those of special note.

Authors Substrate Methods Measures Results

Bhatia et al[14]
Arthritic right radiocarpal joints of 8 
cow calves induced by intraarticular 
injections of turpentine oil

Calves were randomly divided into groups of 4 A= 
control, B=US for 7 min per day  for 7 days starting on 
day 5

Joint tissue histology Joint tissues of group A showed severe inflammation, B 
showed regeneration

**Choi et al[15]
Human articular chondrocytes from 
osteoarthritis patients cultured in 
3-dimensional alginate beads

Low intensity ultrasound (LIUS) was applied at 0, 100, 
200, and 300 mW/cm(2) for 10 min per day for 2, 7, or 
15 days to cells

Histological and biochemical enzymatic 
analyses

LIUS induced the viability of cells only at day 15, but not 
until day 7 after treatment

Chung et al[11] Inflamed rat knee joint LIPUS was applied to the knees each day for 10 days 
after inflammation induction

Proinflammatory factors and synovial 
staining patterns were assessed using 
immunohistology

LIPUS applications yielded a potent anti-inflammatory 
effect

Cook [16] Knees of 18 dogs 2 plugs of cartilage from both knees were extracted, and 
one was treated with LIPUS

Articular surfaces were examined at 6wk and 
12 wk grossly and  histologically

LIPUS improved interface cartilage repair more effectively 
compared to controls

Coords et al[1] Diabetic and non diabetic Wistar rats Daily LIPUS was applied to fracture sites Femoral fracture growth factor, and cartilage 
formation were assessed 

LIPUS increased growth factor expression and cartilage 
formation, regardless of group diabetes status

Gurkan et al[17] Male Hartely guinea pigs  who 
develop osteoarthritis naturally

30mW/cm2 LIPUS was applied for 20 min per day 
from 3-10 months to assess its preventive as well as its 
remedial ability at degeneration onset and at a later 
stage

Joint cartilage graded according to Mankin 
scores, plus immunohistochemical analyses

LIPUS attenuated the process of cartilage degeneration, 
more so early on in the treatment schedule than later on

Hasanova et al[9] Chitosan scaffolds
Low intensity diffuse ultrasound was applied to bovine 
chondrocytes embedded in Citosan matrices at constant 
durations but varying intensities

C h o n d r o c y t e  b i o s y n t h e s i s  a n d  g e n e 
expression were assessed

The stimulation regimen modulated chondrocyte 
biosynthetic activity, and integrin mRNA expression

Huang et al[18]
Examined arthritic cartilage of rats 
with various severities of induced 
osteoarthritis

27 rats with 3 different stages (Grade I, II, III) of papain 
induced knee arthritis received 7 min pulse sonication 
treatment, 3 times/wk for 4 wk;27 rats-controls

Bone scan and histology "Severity indexes" based on bone scan decreased after 
sonication

**Korstens et al[19 ] I n v e s t i g a t e d  w h e t h e r  L I P U S 
stimulates chondrocyte proliferation Chondrocytes and exokants were exposed to LIPUS

Sulphate incorporation into proteoglycans 
by LIPUS was 1.3-fold higher in higher in 
degenerative than collateral monolayers 
as  assessed b iochemical ly ,  +  1 .9 - fo ld 
higher as assessed by autoradiography  

LIPUS stimulates chondrocyte proliferation and matrix 
production; LIPUS might foster 
cartilage tissue repair in osteoarthritic patients 

Lee et al[20]

Examined effect of low intensity 
ultrasound [LIUS} on chondrogenesis 
of  rabbit on mesenchymal stem cells 
(rMSCs) in a 3-D alginate culture  and 
on the maintenance of chondrogenic 
phenotypes after replating them on a 
monolayer culture

LIUS treatment was applied to the rMSCs Chondrogenic markers

LIUS increased: (i) matrix formation; (ii) collagen type II,  
aggrecan, and Sox-9; (iii) the expression of tissue inhibitor 
of metalloprotease-2 (iv) the capacity to maintain the cells’ 
chondrogenic phenotypes 

Li et al. [21] 24 rabbits with knee osteoarthritis Four contrasting groups, including 3 using LIPUS, and 
a control group were studied

After 4 wks articular cartilage pathology was 
examined histologically

LIPUS, plus LIPUS applied with nano magnets decreased 
Mankin scores and suppressed MMP-13 enzyme activity   

Lu et al. [22] 18-wk old rabbits  with part ia l 
patellectomy LIPUS was applied to patellar bone tendon junctions

Histological analyses of vascular endothelial 
growth factor and chondrogenesis were 
conducted

Better cartilage healing took place in experimental versus 
control conditions

Nishikori et al[23] Rabbi t  cu l tured  chondrocytes 
embedded in Atelocollagen gel

LIPUS was administered 20 min per day versus sham 
intervention

Histology and stiffness of the composites were 
assessed

The active treatment appeared to improve the 
chondrocyte implant quality

Oyonarte et al[12] Mandibular condyles of growing rats LIPUS was compared to    condylar  ef fects  of 
mesenchymal stem cells

Imaging and histological analyses were 
conducted

LIPUS had more impact on overall condylar development 
than stem cells alone
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Table 1  Selected studies published prior to 2015 concerning low intensity pulsed ultrasound  (LIPUS) and articular cartilage and joint related effects. Highlighted studies** are those of special note.

Takeuchi et al[24]
Effect of LIPUS on cell growth 
was examined in 3D-cultured 
chondrocytes with a collagen sponge

Ras/mitogen-activated protein kinase (MAPK) and the 
integrin/phosphatidylinositol 3 kinase (PI3K)/Akt 
pathways as well as proteins involved in chondrocyte 
proliferation were 
examined in LIPUS-treated chondrocytes 

Immunohistochemical  
analyses and Western blotting analysis  LIPUS promoted the proliferation of cultured 

chondrocytes and type IX collagen

Uenaka et al[8] High-density semi open culture 
system of rat chondrocytes

Cartilage constructs were exposed to LIPUS for 20 min 
per day

mRNA expression for  cart i lage matr ix 
molecules plus collagen and proteoglycan 
contents and histologic and macroscopic 
observations  were assessed

LIPUS applications enhanced matrix production in the 
high density cultures 

Vaughan et al [5] B o v i n e  a r t i c u l a r  c h o n d r o c y t e s 
cultured in agarose and monolayer 
cultures

LIPUS [PLIUS] was applied for 20 min per day at 30 or 
100 W.cm-2 

Synthesis of  glycosaminoglycans LIPUS has limited potential to provide an effective matrix 
effect

Table 3  Summary of methods and results of key recently published in vivo animal model studies that examined post-LIPUS osteoarthritic outcomes [2015-2019]. Highlighted studies** are those of special note. 
Authors Methods Results

**Fujita et al[31] 15-wk-old male Wistar rats were divided into two experimental groups and a control group LIPUS treatment attenuated cartilage degeneration, decreased the number of osteoclastic cells and 
restored the expression of aggrecan after an initial decrease induced by mechanical overloading

**He et al[32] Temporomandibular [TMJ] osteoarthritis [OA] was induced by  trauma, At 8 wks, experimental 
group began LIPUS treatments for 4 wks (5 days/wk)  

The TMJ-OA model was successfully established, and LIPUS attenuated cartilage retrogression 
determined histologically

**Hsieh et al[33]
To examine whether early intervention with LIPUS helps delay traumatically induced osteoarthritis 
progression in male Sprague-Dawley rats, LIPUS doses of 1.0 MHz, 0.1 W/cm2, were applied on the 
3rd post surgery day and continued for 4 consecutive wks , 5 days/wk

Compared with the sham treatment, LIPUS significantly reduced Mankin scores, inflammatory cells and 
matrix metallopeptidase 13 expressionin rats with osteoarthritis (p < 0.05) 

**Jia et al[34] 30 osteoarthritis and 30 normal rabbits were randomized into three groups FLIPUS attenuated release of type II collagen + proteoglycans + reduced chondrocyte apoptosis + 
effusion

Ji et al[35]
Effect of LIPUS on expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) articular cartilage 
cells of rabbits with knee osteoarthritis (OA) was examined Compared with the normal control group, expression of TIMP-2 in OA model group was increased, 

while MMP-13 decreased

Kanaguchi et 
al[36] 

Temporomandibular joints of 24 adult rats divided into 4 groups: control and mono-iodoacetate 
groups, were injected with contrast media and mono-iodoacetate, respectively, at 12 wks and 
observed up to 20 wks; and LIPUS and mono-iodoacetate + LIPUS groups, injected with contrast 
media and mono-iodoacetate, respectively, at 12 wks with LIPUS performed from 16-20 wks 

At 20(OA) wks, the mono-iodoacetate +LIPUS showed higher bone density

Li et al[7] 30 5-month-old female Sprague-Dawley rats were randomly assigned to six groups
Micro-computed tomography indicated that the thickness and sulfated glycosaminoglycan content 
of cartilage decreased, but the thickness of the subchondral cortical bone plate and the formation of 
subchondral bone increased in the osteoarthritic group under normal joint use conditions

Pan et al[37] Chondrocytes were isolated from knee articular cartilage of 2-wk-old rabbits and treated with LIPUS
LIPUS plus 0.1 mg/mL CCO solution promoted chondrocyte proliferation and type II collagen and 
TGF-β1 expression synergistically in vitro (P < 0.05), but also promoted proliferation in the absence of 
CCO 

Tang et al[38 ]  40 knee injured rabbits were divided into 4 groups, including a control group, a model group, a 
fibroblast growth factor [FGF2] group and a FGF2 + LIPUS In the FGF2 group and FGF2 + LIPUS groups, tissues of knee joint gradually repaired 

Xia et al[4] 36 rabbits were divided into an early control, early osteoarthritis, early treatment, late control, late 
osteoarthritis, and late treatment groups 

Results showed less severe cartilage damage  in the early treatment group than the early osteoarthritis 
group, but no significant difference in cartilage damage or Mankin score between the late treatment and 
late osteoarthritis groups 

Zahoor et al[39]
Intra-articular fractures of the medial tibial plateau of 30 rats were surgically created and LIPUS 
was applied to the operated joints either for the first 2 wk (LIPUS1-2 group) or in weeks 4 and 5 after 
intra-articular fracture (LIPUS4-5 group)

Among the altered gait parameters, maximal and average paw print areas in LIPUS1-2 + 4-5 groups, but 
not LIPUS 0 group, had either reached baseline or 
was recovered 

Zhou et al[40] Divided 18 adult rabbits into a sham operated, an operated untreated group,  and an operation with 
LIPUS therapy delivered daily on day 4 after cartilage surgery Compared to the operation alone, the severity of cartilage injury was decreased in the LIPUS group. 
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Table 2  Summary methods and results key recently published in vitro explants/culture studies [2015-2019]. **=those of special note.
Authors Methods Results

**Cheng et al [25]

Normal and osteoarthritis chondrocytes were exposed 
to LIPUS, and mRNA and protein expression of 
cartilage, metalloproteinases and integrin-FAK-PI3K/
Akt signal pathway-related genes were examined using 
standardized procedures

Compared with levels in normal chondrocytes, expression levels, the 
ECM-related genes were significantly lower in osteoarthritis chondrocytes 
and those of metalloproteinase-related genes were significantly higher 

Nishida et al[26]

Human chondrocytic cell line (HCS)-2/8, rat primary 
epiphyseal and articular cartilage cells, and CCN2-
deficient chondrocytes that impaired chondrocyte 
differentiation, were treated with LIPUS for 20 min at 
3.0 MHz frequency and 60 mW/cm2 power

Gene expression of the chondrocyte differentiation markers and CCN2 
production were increased in the cultured chondrocytes treated with 
LIPUS. In addition, Ca2+ influx and phosphorylation of p38 mitogen-
activated protein kinase (MAPK) and extracellular signal-regulated 
kinase (ERK)1/2 were increased by LIPUS treatment, and the stability 
of TRPV4 and BKca channel mRNAs was decreased by siRNA against 
CCN2 

Sekino et al[3] Investigated effects optimal LIPUS intensity on cartilage 
matrix regeneration in mouse cells

LIPUS induced collagen and aggrecan synthesis and decreased MMP13 
expression

**Tan et al[27]
Cultured explants of porcine cartilage and human 
osteoarthritic cartilage was subjected to daily LIPUS or 
PEMF

Non treated explants showed signs of atrophy at 1 week, but not in 
treated explants where cell clusters were observed

Ting et al[28] Examined the effect  of   LIPUS on scaffold-free 
dedifferentiated bovine articular cartilage chondrocytes 

Those tissues exposed to TGF-B3 produced increases in total collagen and 
glycosaminoglycan along with cartilage-specific gene expression 

**Uddin et al[29]

Examined the specific impact of LIPUS on human 
cartilage cells and explants in the presence and absence 
of IL-1B using Western blot analysis in an effort to 
specifically study the cellular pathway associated with 
IL-1B activity 

LIPUS stimulation applied using a unit with a 10cm2 transducer to cells 
and explants cultured on 35mm plates for a 20min period per day as 
approved for bone healing stimulations, increased proteoglycan content 
as well as inhibiting IL-1B induced loss of proteoglycans

Yamaguchi et al[30]

An osteochondral defect was created on both femur 
grooves of Wistar rats. Four wks later, bone m↓ 
mesenchymal stromal cells (MSCs) were injected into the 
right knee joint 

MSC injection improved the cartilage repair score, and LIPUS irradiation 
improved BV/TV 

    These positive LIPUS induced effects include, but are not limited 
to, its ability to significantly attenuate the impact of destructive 
chondrolytic enzymes known to destroy cartilage matrix in injured 
joints[46], in a dose dependent manner in the context of cultured 
chondrocytes and articular cartilage explants[47], whose effect 
is greater in early ratherthan late osteoarthritis[17]. On the other 
hand, LIPUS not only attenuates the production of an array of 
damaging catabolic responses associated with the natural history 
of osteoarthritis[27], but its thoughtful application is shown to 
concurrently induce favorable anabolic chondrocyte responses, as 
shown by associated changes in the extracellular matrix protein 
content and the parallel upregulation of chondrogenic genes[32]. 
Sekino et al[3] too observed that an optimally developed LIPUS 
dosage effectively improves collagen and aggrecan synthesis and 
remodeling when applied to mouse chondroprogenitor cell line 
ATDC5 for 20 min per day, findings largely consistent with those 
reported by Min et al[44] and DU et al[45].
    Other potentially relevant observed benefits of LIPUS applications 
to chondrocyte explants, and osteoarthritis cartilage models 
include its ability to favorably modulate Transforming Growth 
Factor-B3 levels that can help regulate the reconstruction of injured 
cartilage[28,37], along with the induction of favorable subchondral 
bone alterations[21], plus the induction of CCN2, a protein involved 
in cartilage repair[26]. Ji et al[35] who sought to examine whether the 
expression of serum TIMP-2, significantly decreased in osteoarthritis, 
would be upregulated by LIPUS, showed this in fact did occur. 
    Mechanisms of action and possible pathways of influence 
implicated in the aforementioned processes include the integrin/
focal adhesion kinase/mitogen-activated protein kinase signaling 
pathway. According to Jang et al[48], LIPUS enhances the migration 
of chondrogenic progenitor cells towards injured cartilage 
sites, which could delay or prevent the onset of post-traumatic 
osteoarthritis. LIPUS may further augment cartilage cell proliferation 
and extracellular matrix production by regulating the TGF-BRII and 
Smad2 cellular pathways[37], as well as by alleviating osteoarthritis-

induced prostaglandin E2 and nitric oxide in the synovial fluid of 
affected joints, in addition to reducing chondrocyte apoptosis[34], and 
by increasing the number of nests containing 4-6 chondrocytes by 3.9 
fold in degenerative explants[19]. 
    In sum, regardless of year of study, model examined, study 
methods and aims, LIPUS exposure, and varied application 
approaches, favorable morphological, histological, functional, and 
intracellular signaling outcomes have been observed more often than 
not in the published preclinical literature when LIPUS is applied 
in some way to various forms of osteoarthritic cartilage and/or 
chondrocytes. In addition, when LIPUS is combined with fibroblast 
growth factor, or integrated within microbubbles, or applied after 
mesenchymal stromal cell injection to treat osteochondral defects[30], 
the synthesis and secretion of collagen by chondrocytes, as well as 
concurrent cartilage repair appears to be enhanced[48,49]. 
    Unsurprisingly, several independent researchers who conducted 
well-controlled studies have concluded LIPUS applications may 
hold immense promise in the clinical sphere for preventing, slowing, 
or reversing osteoarthritis pathology[21,25,31,36,38,50], and hence further 
efforts to examine the hypothesized relationships depicted in Figure 
1 and mechanisms of action implied in the literature would appear 
to be of considerable value. As well, establishing which LIPUS 
parameters are most likely to yield optimally favorable chondrocyte 
gene expression influences as implied by Miller et al[51,52], and which 
have the best potential for promoting the production of functional 
chondrocytes in laboratory based cartilage scaffolds as outlined by 
Guo et al[53], should be explored further. 

DISCUSSION AND CONCLUSION
Ultrasound, widely used in medicine as both a diagnostic and 
therapeutic tool, and a form of acoustic radiation that can be 
manipulated experimentally to produce a variety of favorable 
anabolic and beneficial biological effects in various tissues[55], such as 
bone[26,56], has been hypothesized to exert a favorable effect on joint 
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tissues such as cartilage, implicated in osteoarthritis[56]. In particular, a 
variant of ultrasound delivered at low intensity in pulsed form known 
as LIPUS, a non-thermal wave form of mechanical stimulation has 
specifically been studied for some time to ascertain its potentially 
beneficial effects on the repair of injured or diseased articular 
cartilage chondrocytes, known to be a very limited process, but one 
possibly requiring some form of mechanical stimulation[48]. As well, 
almost 15 years ago, Lee et al[20] concluded carefully calibrated and 
delivered LIPUS applications had the potential to serve as an efficient 
and cost-effective method for inducing chondrogenic differentiation 
of mesenchymal stromal cells in vitro for purposes of fostering 
cartilage tissue engineering attempts. 
    In this respect, and despite some evidence to the contrary[5,13], and 
possible publication bias, along with limited external validity to the 
clinic, Gurkan et al[17] and many others, such as Korstjens et al[19], 
have observed that LIPUS, can be applied effectively in various 
in vitro contexts to attenuate, if not totally reverse, osteoarthritis 
cartilage degeneration. Moreover, these effects are apparently 
causal as demonstrated in several well-designed controlled studies 
conducted using a variety of osteoarthritic animal models[16,63]. 
    These LIPUS induced effects are attributed in part to its ability to 
stimulate chondrocyte migration, proliferation, and differentiation, 
as well as to down-regulate chondrocytic ERK1/2 and p38 
extracellular signaling kinases, known to be highly activated during 
inflammation[63]. LIPUS induced changes also include related 
modulations in type II collagen and proteoglycan and matrix 
metalloproteinase-13 levels[33,63]. As such, it appears LIPUS is 
potentially able to delay degeneration in early osteoarthritis[17], and 
may prove of especially high value as far as the development of 
efficacious osteoarthritis disease modifying interventions go, when 
compared to presently available treatment options that commonly 
provide only symptomatic relief. 
    LIPUS may also improve overall chondral histology[6], while 
preventing or delaying excess cartilage degradation[29,33], and in 
accord with early work[6] may specifically reduce the expression 
not only of matrix metallopeptidase-13[29,33], but interleukin-1B[29], 
an additional catabolic degradative overexpressed enzyme found in 
osteoarthritis. On the other hand, in addition to clearly heightening 
type II collagen production in early stage osteoarthritis[4], LIPUS 

applications help to reduce synovial inflammation[33], increase 
chondrocyte numbers[36], and enhance other strategies designed to 
promote anabolic cartilage chondrocyte repair processes[37]. 
    Indeed related research published over the past 35 years in 
various laboratories is striking in its agreement of the hypothesis 
that certain dosages and applications of LIPUS are likely to exert 
favorable clinically important biophysical influences on both 
normal chondrocytes, as well as those from osteoarthritic animal 
and human joint sources. Moreover, notwithstanding the limitations 
of in vitro and ex vivo studies, and their potentially limited 
generalizability to the clinical sphere, a sizeable number of the 
presently reviewed studies found positive outcomes that could auger 
well for bioengineering efforts, as well for attenuating retrogression 
of cartilage. Showing favorable results among differing models of 
osteoarthritis, diverse chondrocyte cell cultures, and when applying 
diverse research approaches as far as cartilage repair goes strengthens 
confidence in the findings. Moreover, most studies applied some 
laudable and rigorous strategies and efforts to ensure that the models 
of osteoarthritic damage and LIPUS interactions were valid and 
not confounded by changes in environmental conditions, among 
other factors. The assumption that instruments and methods used 
to assess LIPUS outcome were carefully chosen, calibrated, valid, 
and reliable, along with the fact that ultrasound can propagate in 
the human knee[56], tends to heighten the credibility and possible 
clinical relevance of the cummulative body of preclinical findings. 
Parallel research in advance of clinical trials, also provides further 
support for a variety of plausible biophysical mechanisms of 
action to explain LIPUS outcomes, that are highly consistent with 
known mechanotransducer effects on anabolic as well as catabolic 
chondrocyte pathways[57-60], and potential osteoarthritis related 
therapeutic genes[32]. 
    As mentioned previously, these mechanisms of action 
include, but are not limited to, an apparent reduction in matrix 
metalloproteinases-13 immunopositive cells[36], downregulation 
of interleukin 1 [IL 1], a potent degradative enzyme responsible 
for considerable inflammatory damage in osteoarthritis that is not 
readily attenuated by standard pharmacologic interventions[61], and 
the activation of the circadian Per-2 gene[32]. Another is related to 
its potential for stimulating chondrocyte proliferation along with 
heightened matrix production[19,29]. Moreover, LIPUS appears 
to stimulate chondrocyte proteoglycan synthesis[62], while down 
regulating potent catabolic cartilage enzymes[3,29,33,47], which can 
otherwise degrade one or more essential functional and structural 
components of the chondrocyte extracellular matrix[63], concurrently. 
    As such, if the observed ability of LIPUS to upregulate 
cartilage specific gene expression mechanisms that are potentially 
therapeutic[32], such as tissue inhibitor of metalloproteinase-2 (TIPM-
2)[35], along with its concomitant influence on repressing catabolic 
enzyme actions and production, such as matrix metallopeptidase 
(MMP-13)[35] are clinically transferable, one could anticipate a 
resounding impact as far as heightening our ability to ameliorate 
the extent and magnitude of osteoarthritis disablement. However, 
because the chondrocytic mechanotransducing processes initiated 
or forged by LIPUS may be time sensitive, research to examine an 
array of timing parameters and/or possible time frames for optimally 
modulating favorable LIPUS associated outcomes and avoiding 
unfavorable ones is strongly recommended. As well, examining the 
relative impact of other LIPUS stimulation parameters as this affects 
the sensitivity of the chondrocyte membrane and its receptors in 
both health and disease may help to shed new light on LIPUS and its 
potential for fostering desirable repair of cartilage defects, especially 

LIPUS Micromechanical Perturbations

Selectively Stimulate Mechanically Sensitive Chondrocyte Cell Membrane 
Proteins/ Signaling and Transcription Pathways

Extracellular and Intracellular Effects

Transient Upregulation Aggrecan and Collagen II Genes

Downregulation of Destructive Enzymatic Genes

Increases in GlucosaminoGlycan Content + Collagen Matrix Production

Anti-inflammatory Effects

Improved Quality and Rate Osteochondral Repair

  Reduced Severity and Progression of Osteoarthritis

Figure 1 Schematic representation of the impact of LIPUS on chondrocyte 
functions that maybe useful for treating osteoarthritis symptoms, and for 
regenerative cartilage repair efforts as adapted from [5, 11, 16, 19, 21, 25, 
26, 29, 46, 47, 50, 54, 63, 64, 66-70]



osteoarticular cartilage reparative and protective processes.
    In addition, efforts to carefully examine the impact of LIPUS 
on multiple chondrocyte cell membrane signaling pathways, and 
target genes, especially those not previously examined, is strongly 
encouraged for further examining treatment mechanisms, as is 
research to examine the utility of matching the frequency of the 
driving force of LIPUS to that of the chondrocyte system’s natural 
frequency of vibration as outlined by Miller et al[51,52], and Louw et 
al[68]. 
    In the interim, while the literature cited above is not without 
limitations, or necessarily inclusive of all research, it is concluded 
that a variety of favorable adaptive chondrocyte responses are 
likely to be observed following several modes of applying LIPUS 
in experimental settings that do not occur in control samples[21,69]. 
Moreover, these favorable responses along with analogous research 
to tentatively explain LIPUS mechanisms of action parallel those that 
emerge or are implicated in the context of chondrocyte cell biology 
and the nature of the osteoarthritis disease process. 
    In light of the formidable current and emergent global challenges 
in managing disabling osteoarthritis in aging populations, along 
with its limited reversibility, and treatment options, especially 
those that can foster articular cartilage repair, findings that LIPUS 
appears to favorably influence anabolic:catabolic cartilage metabolic 
factor ratios, and can do this consistently in accord with established 
chondrocyte membrane mechanotransduction and transport 
mechanisms through variously defined dose parameters, is surely 
noteworthy, and should not be ignored. To the contrary, it appears 
that consistent with knowledge that manipulation of the cartilage 
physical microenvironment by biophysical cues[64], plus analogous 
views presented here and others[66-70], dedicated efforts to extend the 
findings of LIPUS applications in the context of the laboratory to 
the clinic is likely to prove highly beneficial to clinicians and others 
seeking a feasible tool for cartilage tissue repair, as proposed by 
Korstiens et al[19], as well as many current or future osteoarthritis 
sufferers, and should focus on discerning and replicating both its 
independent effects, as well as its potential utility as an adjunctive or 
additive therapeutic strategy[21,37,38,71,72], or both, as far as favorably 
influencing osteoarthritic articular cartilage reparative, regenerative, 
and reconstructive processes. 
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