
protein E8, SS-31 (elamipretide), tamoxifen, kartogenin (KGN)-PRP 
gel, and percutaneous electrolysis. Based on clinical studies, the most 
important new possible therapeutic options for tendon healing include 
acellular dermal matrix (ADM), sodium hyaluronate, augmentation 
with resorbable type I bovine collagen implant, and microfragmented 
adipose tissue (M-FATS). Although much progress has been made in 
understanding the molecular mechanisms of tendon healing, much 
remains to be understood about them. It is hoped that future research 
may help to fully or better understand these mechanisms, which will 
be very important to find new therapies to help improve the healing 
capacity of tendon injuries.

Key words: Tendon healing; Molecular mechanisms; Clinical appli-
cations
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INTRODUCTION
Tendons injuries can be incapacitating, and that tendon pathology has 
turned into notably important only in the last few years, mainly for 
two reasons: (a) The dissemination of competitive sports at a high 
level; (b) Different strategy to tendon injuries since there is better 
information on the physiopathology and molecular configuration of 
tendons[1].
    Tendon is a dense connective tissue that transfers mechanical 
forces from skeletal muscle to bone[2]. Tendons are essential for the 
function of the musculoskeletal system both to confer stability and 
to allow movement; however, little is known about the molecular 
mechanisms involved with tendon development and tendon cell dif-
ferentiation[3,4]. 
    Tendon injuries are common and are responsible for substantial mor-
bidity both in sportspeople and in the general population[5]. Tendons are 
regularly put through mechanical stresses and these initiate intricate 
mechanisms in response which affect their structure during their heal-
ing response. Whilst the importance of mechanical stresses has long 
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ABSTRACT
Tendon injuries are frequent and responsible for substantial morbidity 
both in sports and in the workplace. Tendon injuries posses an 
elevated morbidity percentage and is challenging to accomplish a 
satisfying prognosis with currently accessible management methods. 
Contemporary strategies utilized for tendon healing constantly result 
in the formation of fibrovascular scar tissue, wich substantially affects 
the biomechaniscs of the healed tendon. Furthermore, the related 
functional deficit declines over time with an augmented injury repetition 
risk. Tendinopathies are aching, impairing conditions that affect 25% 
of adults all over the world. In this article a narrative review of the 
literature on known general molecular mechanisms of tendon healing 
and their potential clinical apllications has been performed. Based 
on experimental and in vitro sudies, the most importan new possible 
therapeutic options for tendon healing include asperosaponin VI, 
hyaluronic acid, substance P inhibitor, tetranectin, platelet-rich plasma 
(PRP), platelet-derived growth factor, promethazine, milk fat globulin 
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been understood for tendon function and repair, the precise mecha-
nisms of mechanotransduction in tendon cells are unclear and the clari-
fication of these mechanisms is a key objective in the science of tendon 
healing[6]. A quarter of adults worldwide have experienced a tendinopa-
thy[7]. However, in spite of this, with currently accessible management 
methods full functional healing is difficult to achieve. Contemporary 
strategies utilized for tendon healing result in the formation of fibro-
vascular scar tissue, which substantially affects the biomechanics of the 
healed tendon; this is particularly important in multiply injured tendons 
where these structural abnormalities become cumulative[8]. It is un-
likely that these will improve without better understanding of the cells 
and molecular pathways that drive tendon regeneration[9].
    The purpose of this article is to perform a narrative review of 
the literature about recent developments in the molecular mecha-
nisms of tendon healing and the possibility of using this knowledge 
for promoting tendon healing in clinical practice. On 28 February 
2023 I searched in PubMed using “tendon healing AND molecular 
mechanisms” as keywords and found 155 results. Then I searched in 
PubMed using “tendon healing AND clinical applications” as key-
words and found 183 results. I finally reviewed 61 because I consid-
ered that they were directly related to the title of this article. 

MOLECULAR MECHANISMS OF TENDON 
HEALING: RECENT DEVELOPMENTS
In tendon injury, mesenchymal stem cells (MSCs) can improve 
tendon healing by secreting their own protein
In a controlled rat tendon injury model published in 2017, Lee et al 
studied whether MSCs could differentiate into the tenogenic lineage 
and secrete their own proteins. They found that in tendon injury 
MSCs can improve tendon healing by secreting their own protein and 
have potential as a treatment alternative in human tendinopathy[10].

Transcription factors
The transcription factor scleraxis (Scx) is a precise marker of both 
precursor and mature tenocytes. Some studies have shown a crucial 
role of (Scx) in a progenitor-cell lineage in tendon healing of adult 
mouse. These progenitor cells could constitute goals in approaches to 
promote tendon repair[2,3]. 

Small extracellular vesicles with long non-coding RNA (LncRNA) 
H19 “overload”
Tao et al confirmed a somewhat dependable approach for enrichment 
of LncRNAs into extracellular vesicles (EVs), offering new clues 
for modularized EVs-based treatments, and modularized EVs rep-
resented a potential option for tendon regeneration[11]. Hayashi et al 
have shown that early passaged MSC-EVs facilitate Achilles tendon 
healing compared with senescent MSC-EVs. In this study EVs from 
conditioned medium of human bone marrow MSCs at passage 5 (P5) 
and passage 12 (P12) were examined utilizing mouse Achilles tendon 
rupture model and lectin microarray. P5 MSC-EVs expedited Achil-
les tendon healing compared with P12 MSC-EVs [12].

The role of YAP/TAZ in tendon cells
Xu et al encountered that irisin facilitates the proliferation and 
tenogenic differentiation of rat tendon-derived stem/progenitor cells 
(TSPCs) in vitro by activating Yes-associated protein 1 (YAP) / 
Tafazzin (TAZ), and the process was associated with a ubiquitin-
proteasome proteolytic pathway. Therefore, irisin and drugs target-
ing YAP/TAZ might be promising therapeutic alternatives for tendi-
nopathy[13]. 

NEW POSSIBLE THERAPEUTIC OPTIONS FOR 
TENDON HEALING 
Experimental and in vitro studies
Based on experimental and in vitro studies, the most important new 
possible therapeutic options for tendon healing include asperosaponin 
VI, hyaluronic acid, substance P inhibitor, tetranectin, PRP, platelet-
derived growth factor, promethazine, milk fat globulin protein E8, 
SS-31 (elamipretide), tamoxifen, kartogenin (KGN)-PRP gel, and 
percutaneous electrolysis. It is hoped that as the science develops, we 
can improve the treatment of these common but difficult to treat inju-
ries. Table 1 summarizes the most recent data on possible treatments 
that could improve tendon healing from experimental and in vitro 
studies[14-51].

Clinical studies
Based on clinical studies, the most important new possible therapeu-
tic options for tendon healing include acellular dermal matrix (ADM), 
sodium hyaluronate, augmentation with resorbable type I bovine col-
lagen implant, and microfragmented adipose tissue (M-FATS). Table 
2 summarizes the most recent information on possible treatments that 
could improve tendon healing from clinical studies[52-61].

CONCLUSIONS
This article has reviewed the existing knowledge on the molecular 
mechanisms of tendon healing and their use for new treatments to 
effectively improve tendon healing. Based on experimental and in 
vitro studies, the most important new possible therapeutic options for 
tendon healing include asperosaponin VI, hyaluronic acid, substance 
P inhibitor, tetranectin, PRP, platelet-derived growth factor, prometh-
azine, milk fat globulin protein E8, SS-31 (elamipretide), tamoxifen, 
kartogenin (KGN)-PRP gel, and percutaneous electrolysis. It is hoped 
that as the science develops, we can improve the treatment of these 
common but difficult to treat injuries. Based on clinical studies, the 
most important new possible therapeutic options for tendon healing 
include acellular dermal matrix (ADM), sodium hyaluronate, aug-
mentation with resorbable type I bovine collagen implant, and micro-
fragmented adipose tissue (M-FATS). Whilst much progress has been 
made in recent years, there still remains much to be understood about 
the molecular mechanisms of tendon healing. It is hoped that as the 
science develops, we can improve the treatment of these common but 
difficult to treat injuries. 

Table 1 Experimental and in vitro studies: possible treatments that could improve tendon healing.
AUTHORS 
[REFERENCE] YEAR FINDINGS

Hudgens et al 
[20] 2016 PRP contains many growth factors and cytokines that trigger several cellular signaling cascades, but it had been had to establish exactly which 

signaling pathways and cellular responses were triggered following PRP treatment.

Andia et al [19] 2018 PRP can be utilized in the treatment of tendinopathy due to its prospect to rebalance inflammation, and because PRP contains tendoinductive 
factors that can drive the fate of stem cells.

Kobayashi et al 
[21] 2020 Local application of PRP could improve the tissue-healing process both directly via action on localized cells and indirectly through the 

recruitment of reparative cells via the blood flow.
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Oliva et al [16] 2021 In in vitro and preclinical research, HA has demonstrated physical-chemical properties that are useful to contribute to tendon healing. Besides, 
in clinical reports, HA has been utilized with encouraging outcomes in different tendinopathies.

Han et al [23] 2022 Exosome-delivered BMP-2 and PLA promoted tendon bone healing in rotator cuff tears via Smad/RUNX2 pathway.

Xu et al [24] 2022 IPFP MSCs-derived exosomes accelerated tendon-bone healing and intra-articular graft remodeling after ACLR, which may have resulted from 
the immunomodulation of macrophage polarization.

Li et al [25] 2022 BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, diminished the early inflammatory reaction at the 
tendon-bone interface, and promoted early healing after ACLR.

Wang et al [26] 2022 Local administration of in situ-forming ASC-Exos effectively facilitated the healing of bursal-side partial-thickness rotator cuff tears.

Cai et al [27] 2022 A self-healing hydrogel antiadhesion barrier with MMP-2-responsive drug release behavior was highly effective for reducing inflammation and 
inhibiting tendon adhesion.

Uyar et al [28] 2022 The tensile breaking force of the repaired tendons was similar to healthy controls after the application of MSCs and PRP following tendon repair.
Dietrich-Zagonel 
et al [29] 2022 Dexamethasone treatment at the right time point (days 7-11) and dose (0.1 mg/kg) substantially ameliorated the material properties of the healing 

Achilles tendon. Dexamethasone treatment was dose- and time-dependent, and positive effects were detected even in a partly unloaded condition.
Sakaguchi et al 
[30] 2022 IWR-1 and promethazine suppressed Wnt/β-catenin signaling and improved the histological abnormalities of healing tendons. IWR-1, however, 

compromised the biomechanical properties of healing tendons, whereas promethazine improved them.

Geng et al [31] 2022 MFG-E8 promoted tendon-bone healing histologically and biomechanically, probably by the regulation of inflammatory processes via 
macrophage efferocytosis and M2 macrophages polarisation.

Zukawa et al [32] 2022 HD-AM prevented peritendinous adhesion macroscopically, pathologically, and mechanically without impairing the sutured tendon.

Chen et al [33] 2022 These authors developed a functionalized anti-adhesive membrane that promotes nascent tendon matrix remodeling and improves the 
regenerative immune microenvironment.

Wang et al [34] 2022 In flexor tendon injury, the wrapping of a Him-MFM relieved pathological responses, protected tenocytes in situ, and restored hierarchically 
arranged collagen fibers covered with basement membrane, and was structurally and functionally comparable to mature tendons.

Fakhraei et al 
[35] 2022

The engineered electrospun NFMs could withstand forces of 33 and 19 N before and after 1000 pull cycles that are sufficient during tendon 
healing process. The bonding of chitosan fibers over PCL nanofibers allowed for production of NFMs with appropriate mechanical integrity and 
degradation rate.

Izumi et al [36] 2022
Mucoid degeneration in injured Achilles tendons might result from the upregulated expression of genes implicated the synthesis of sulfate 
proteoglycans and can be inhibited by reduction of glucose utilization. Inhibition of glucose use improved structural recovery of injured 
Achilles tendons.

Liu et al [22] 2022 Biomechanical studies demonstrated an increase of tendon stiffness, maximum load and maximum stress with treatment of PDGF-loaded 
microneedles.

Chen et al [37] 2022 PDGF-BB has a positive effect on tendon healing by enhancing inflammatory responses, speeding up angiogenesis, stimulating tendon cell 
proliferation, increasing collagen synthesis and increasing the biomechanics of the repaired tendon.

Wang et al [38] 2022 PLGA-PDGF-AA promoted regeneration after tendon injury and serves as a potential adjuvant material for surgical tendon injury repair.

Zhang et al [39] 2022 Mitochondrial dysfunction appeared to play a role in the development of tendinopathy, and SS-31 (elamipretide), as a mitochondrial protective 
agent, might be a therapeutic drug in the treatment of tendinopathy.

Zhang et al [40] 2022 In a supraspinatus tendinopathy model the mitochondrial protectant SS-31(elamipretide)  improved mitochondrial function, promoting tendon 
healing, especially when combined with removal of subacromial impingement.

Kim et al [41] 2022

A vitamin D (Vit D) delivery system with cross-linked HA hydrogel (Gel) and Tween 80 (T80), Vit D@Gel/T80, could be a new regeneration 
technique for the treatment of tendinopathy. Vit D@Gel/T80 diminished TNF-α induced damage to human tenocytes in vitro. In an animal 
study, the Vit D@Gel/T80 injected group demonstrated tendon restoration features. This Vit D@Gel/T80 system may be a local injection 
material in the treatment for tendinopathy.

Kayiran et al [42] 2022 A recent study achieved less peritendinous adhesion with the local administration of tamoxifen when compared to systemic administration of 
tamoxifen.

Tong et al [43] 2022 Lymphangiogenesis played a positive role in rotator cuff healing, and targeting the lymphatic drainage at healing site could be a new therapeutic 
method to promote rotator cuff injury repair.

Uno et al [44] 2022 A model of degenerative rotator cuff tears demonstrated that rotator cuff repair combined with BM-PRF enhanced tendon-bone continuity and 
augmented the VEGF-positive cells at 4 weeks and obtained preferable tendon-bone maturation at 12 weeks.

Freedman et al 
[45] 2022 A tough hydrogel with an adhesive side and high drug-loading capacity was biocompatible, strongly adhered to patellar, supraspinatus and 

Achilles tendons of live rats, boosted healing and reduced scar formation in a rat model of Achilles-tendon rupture.
Mohindra et al 
[46] 2022 These authors suggested that matrikines (extracellular matrix fragments) can improve the outcomes post-injury by assisting with tendon healing.

Rocha et al [47] 2022 Wetspun fibrous structures based on biopolymers, more specifically PHA, PCL and polyethylenes, are extensively used due to their exceptional 
properties, such as the ability to mimic the native tissue, their biodegradability and biocompatibility, and good mechanical properties.

Zhang et al [48] 2022 After ACLR, injection of kartogenin-PRP gel substantially diminished the inflammatory response and inhibited AKT/PI3K/NF-κB activation in 
cartilage tissue, which promoted tendon-bone healing.

Yoon et al [49] 2022 At 8 weeks after rotator cuff repair, the graphene oxide /alginate scaffold improved tendon-to-bone healing without causing any signs of toxicity.
Yamaura et al 
[50] 2022 Augmentation therapy utilizing tilapia scale-derived type I collagen scaffolds promoted angiogenesis and fibrocartilage regeneration at the 

enthesis and provided higher mechanical strength than controls.

Bai et al [51] 2022 A bioprinted living tissue construct with layer-specific, GFs-loaded µS had the unique capability to reduce fibrovascular scar tissue formation 
and simultaneously facilitate enthesis tissue remodeling.

Wang et al [14] 2022 The effects of asperosaponin VI on injured tendons principally involve eliminating inflammation, reestablishing balance to extracellular matrix 
collagen metabolism and inducing tendon cell proliferation.

Peñin-Franch et 
al [15] 2022 Percutaneous electrolysis (galvanic current) activates the NLRP3 inflammasome and induces an inflammatory reaction that triggers a collagen-

mediated regeneration of the tendon.

Ko et al [17] 2022 In a collagenase-induced rat model of tendinopathy SPI promoted tendon healing. Therefore, SPI seemed to be a promising agent for the 
treatment of tendinopathy in humans.

Hanaka et al [18] 2022 Utilizing the patella tendon injury model in tetranectin-null mice, it was found that that tetranectin promoted tendon healing at the inflammatory 
stage after a tendon injury. Therefore, tetranectin could be a good candidate for enhancing tendon healing after injury in clinical practice.

PRP, platelet-rich plasma; HA, hyaluronic acid; BMP-2, bone morphogenetic protein-2; PLA, polylactic acid; IPFP MSCs, infrapatellar fat pad mesenchymal stem cells; 
ACLR, anterior cruciate ligament reconstruction; BMSC-Exos, bone marrow stromal cell-derived exosomes; ASC-Exos, adipose stem cell-derived exosomes; MMP-2, 
matrix metalloproteinase-2; MSCs, mesenchymal stem cells; MFG-E8, milk fat globulin protein E8; HD-AM, hyperdry amniotic membrane; Him-MFM, hedging immune 
strategy based microfibrous membrane; NFMs, nanofibrous membranes; PCL, polycaprolactone; PDGF, platelet-derived growth factor; PLGA-PDGF-AA, PDGF-AA-
modified poly(lactide-co-glycolide) acid (PLGA); BM-PRF, bone marrow-derived platelet-rich fibrin; TNF-α, tumor necrosis factor alpha; VEGF, vascular endothelial 
growth factor; PHA, polyhydroxyalkanoates; GFs, growth factors; SPI, substance P inhibitor.
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Table 2 Clinical studies on possible treatments that could improve tendon healing.
AUTHORS 
[REFERENCE] YEAR FINDINGS

Hurley et al [52] 2019 The utilization of PRP in rotator cuff repair improved healing percentages, pain levels, and functional results. However, PRF had no benefit in 
improving tendon healing percentages or functional results.

Schwitzguebel et 
al [53] 2019 PRP injections within interstitial supraspinatus tears did not ameliorate tendon healing or clinical results compared with saline injections and 

were associated with more complications.
Yang et al [54] 2020 This systematic review indicated the effectiveness of PRP when applied to the bone-tendon interface during arthroscopic rotator cuff repair.

Hurley et al [55] 2021
LP-PRP diminished the percentage of retear and/or incomplete tendon healing after arthroscopic rotator cuff repair and ameliorated patient-
reported outcomes as compared with a control. However, it was still unclear whether LP-PRP improved the tendon healing percentage when 
compared with LR-PRP.

Martel et al [56] 2022 This study demonstrated a trend to ameliorate tendon healing after RC repair with vitamin C supplementation.

Lee et al [57] 2022 The beneficial impact of acellular dermal matrix after tendon repair was confirmed by ameliorated postoperative functional result at flexor 
zones III, IV, and V, preventing peritendinous adhesions and acting effectively as an anti-adhesive barrier.

Zhang et al [58] 2022

Through the analysis of filtered multi-relational data mining image data, it was encountered that the application of biomaterials had a positive 
effect on promoting the stable healing of tendon. A multilevel model was utilized to assess the actual impact of several commonly used 
biomaterials in repairing tendon injury and adhesion. The outcomes demonstrated that sodium hyaluronate had the best repair effect on tendon 
injury.

Camacho-Chacon 
et al [59] 2022

This prospective study analyzed 30 patients with partial or complete rotator cuff tears who experienced arthroscopic repair and augmentation 
with a resorbable type I bovine collagen implant. Biopsies of tissue formed from bioinductive type I bovine collagen implants demonstrated, 
6 months after surgery, the generation of a neotendon indistinguishable from the native one. Histology and MRI, showed complete integration 
of the implant and absence of inflammatory or foreign body reactions. The clinical parameters, thickness and MRI signal of the tendon 
ameliorated substantially at 6 months, regardless of the type and size of the tear, and remained unchanged until 12 months (case series, level 
IV of evidence).

Ferracini et al [60] 2022
After complete Achilles tendon tear, 8 patients experienced open suture repair in conjunction with perilesional application of a preparation 
of M-FATS rich in MSCs. The combined application of derived M-FATS for tendon rupture was safe and presented new possibilities for 
enhanced healing (case control study, level III of evidence).

Boksh et al [61] 2022 A systematic review and meta-analysis found that PRP injections for acute Achilles tendon ruptures do not improve medium to long-run 
biomechanical and clinical results.

PRP, platelet-rich plasma; PRF, platelet-rich fibrin; LP-PRP, leukocyte-poor PRP; LR-PRP, leukocyte-rich PRP; MRI, magnetic resonance imaging; M-FATS, 
microfragmented adipose tissue; MSCs, mesenchymal stem cells.

wound.2021.0069]
9. Kaji DA, Howell KL, Balic Z, Hubmacher D, Huang AH. 

Tgfβ signaling is required for tenocyte recruitment and 
functional neonatal tendon regeneration. Elife 2020; 9: e51779. 
[PMID: 32501213]; [PMCID: PMC7324157]; [DOI: 10.7554/
eLife.51779]

10. L e e  S Y,  K w o n  B ,  L e e  K ,  S o n  Y H ,  C h u n g  S G . 
The rapeu t i c  mechan i sms  o f  human  ad ipose -de r ived 
mesenchymal stem cells in a rat tendon injury model. Am J 
Sports Med 2017; 45: 1429-1439. [PMID: 28291954]; [DOI: 
10.1177/0363546517689874]

11. Tao SC, Huang JY, Li ZX, Zhan S, Guo SC. Small extracellular 
vesicles with LncRNA H19 “overload”: YAP regulation as 
a tendon repair therapeutic tactic. iScience 2021; 24: 102200. 
[PMID: 33733065]; [PMCID: PMC7937563]; [DOI: 10.1016/
j.isci.2021.102200]

12. Hayashi Y, Yimiti D, Sanada Y, et al. The therapeutic capacity 
of bone marrow MSC-derived extracellular vesicles in 
Achilles tendon healing is passage-dependent and indicated 
by specific glycans. FEBS Lett 2022;596(8):1047-58. [PMID: 
35294042]; [DOI: 10.1002/1873-3468.14333]

13. Xu L, Chen Z, Geng T, Ding C, Omoto T, Ogura T, et al. Irisin 
promotes the proliferation and tenogenic differentiation of 
rat tendon-derived stem/progenitor cells via activating YAP/
TAZ. In Vitro Cell Dev Biol Anim 2022; 58: 658-668. [PMID: 
36125694]; [PMCID: PMC9550707]; [DOI: 10.1007/s11626-022-
00699-2]

14. Wang K, Cheng L, He B. Therapeutic effects of asperosaponin 
VI in rabbit tendon disease. Regen Ther  2022; 20: 1-8. 
[PMID: 35310016]; [PMCID: PMC8898761]; [DOI: 10.1016/
j.reth.2022.02.001]

15. Peñin-Franch A, García-Vidal JA, Martínez CM, Escolar-reina P, 
Martinez-Ojeda RM, Gómez AI, et al. Galvanic current activates 
the NLRP3 inflammasome to promote type I collagen production 
in tendon. Elife 2022; 11: e73675. [PMID: 35199642]; [PMCID: 
PMC8896827]; [DOI: 10.7554/eLife.73675]
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