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ABSTRACT
Neurotrophic factors are well known for their action on the 
development, survival and regeneration of neurons. However, 
new functions have been assigned to those peptides not only 
during development but also throughout the postnatal life. The 
searches for new therapeutic strategies have highlighted the role of 
neurotrophic factors in various phenomena related to pathological 
and physiological processes. In this review will summarize the 
knowledge of the families of neurotrophic factors as well as other 
growth factors with known neurotrophic activity. We also aim to 
provide a synopsis of the involvement of those peptides in cardiac 
diseases since this knowledge undoubtedly contributes to the 
development of therapeutic strategies for prevention and treatment of 
heart diseases.
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Abbreviations
NF: Neurotrophic Factors, NGF: Nerve Growth Factor, BDNF: Brain 
Derived Neurotrophic Factor, NT3: Neurotrophin 3, NT4/5: Neu-
rotrophin 4/5, GDNF: Glial cell line-Derived Neurotrophic Factor, 
NTN: Neurturin, PSP: Persephin, ART: Artemin, CDNF: Cerebral 
Dopamine Neurotrophic Factor, MANF: Mesencephalic Astrocyte-
derived Neurotrophic Factor, LIF: leukemia Inhibitory Factor, IL-
6: Interleukin-6, IL-11; Interleukin-11, OSM: Oncostatin M, CNTF: 
Ciliary Neurotrophic Factor, IGF-1: Insulin-like Growth Factor 1, 
FGF-a or FGF-1: Acidic Fibloblast Growth Factor, FGF-b or FGF-
2: Basic Fibroblast Growth Factor, PNS: Peripheral Nervous Sys-
tem, CNS: Central Nervous System, Trk: tyrosine kinase, p75NTR: 
p75 neurotrophin receptor; TGF-b: Transforming Growth Factor b, 
RET: receptor tyrosine kinase Ret, GFRα: GDNF family co-receptor 
α, GPI: glycosylphosphatidylinositol, CNTFR: CNTF Receptor, 
gp130: glycoprotein of 130 KD, LIFRb: Leukemia Inhibitory Factor 
Receptor alpha b, IGF-1R: Insulin Growth Factor Receptor, FGFR: 
Fibroblast Growth Factor Receptor, PI3K/Akt: Phosphatidylinositol 
3' –kinase, ERSR: Endoplasmic Reticulum Stress Response, ET-1: 
Endothelin 1, PC2 cells: Pheochromocytoma - chromaffin cells, Hi-
FGF-2: High molecular weight FGF-2, lo-FGF2: Low molecular 
weight FGF-2), MAPK: Mitogen-activated Protein Kinase, ERKs: 
Extracellular signal Regulated Kinases,JNKs: c-Jun N-terminal Ki-
nases, EMC: ExtraCellular Matrix.

INTRODUCTION
Different cell types, including fibroblasts, vascular smooth muscle 
cells, endothelial cells, macrophages, pericytes, and stem cells 
compose the heart, together with distinct cardiac muscle cell types, 
whose specialized functions include contraction, generation and 
conduction of electrical activity, and secretion of different molecules. 
A network of dynamic interactions between all those cell types and 
the extracellular matrix as well as soluble factors intensifies the 
complexity of cardiac functions[1,2]. Overall, the sympathetic and 
parasympathetic innervation works in a reciprocal way to control 
heart rate (chronotropy) and conduction velocity (dromotropy) 
through acting on pacemaker cardiac cells. Also, sympathetic nerves, 
by innervating cardiomyocytes from atria and ventricles modulate 
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the force of contraction and relaxation (inotropy and lusitropy 
respectively) of the myocardium[3]. Afferent nerves can also elicit 
different physiological responses in the heart[4].
    Among the factors that control both cardiac development and 
function are the neurotrophic factors (NF), a group of polypeptides 
originally known by their ability in promoting development, survival 
and regeneration of neurons[5-7]. New functions have been assigned 
to these substances during embryonic and postnatal development, 
adulthood and aging, such as cell proliferation and activation[8-10], 
hormonal control[11,12], energy balance[13,14], gametogenesis[15,16], 
plasticity, learning and memory[17,18]. The search for novel 
therapies has also highlighted the role of NF in many pathology-
related phenomena like neurodegeneration and regeneration[6,19-21], 
inflammation[22], stress[23,24], and pain[25-27]. Accordingly, NF can be 
secreted not only by neurons and glial cells but also by several other 
cell types, like endothelial and epithelial cells[28,29], muscle cells[30,31], 
adipocytes[32], endocrine cells[33,34], and immune cells[35-37].
    In this review, we will gather key information on NF involvement 
in cardiac diseases. Comprehensive knowledge of the role of these 
substances may provide subsidies for their use as therapeutic 
molecules in both the prevention and the treatment of heart diseases.

NEUROTROPHIC FACTORS (NF)
NF from mammals can be grouped in 3 families of biochemically 
related molecules. The Neurotrophin family includes Nerve Growth 
Factor (NGF), Brain Derived Neurotrophic Factor (BDNF), and 
the Neurotrophins 3 and 4/5 (NT3 and NT4/5). The Glial cell line-
Derived Neurotrophic Factor (GDNF) family includes GDNF 
itself, Neurturin (NTN), Persephin (PSP), and Artemin (ART)
[39]. More recently, a revolutionary family of NF has been settled 
with two members, the Cerebral Dopamine Neurotrophic Factor 
(CDNF) and the Mesencephalic Astrocyte-derived Neurotrophic 
Factor (MANF)[40]. The neurokine superfamily includes leukemia 
inhibitory factor (LIF), interleukin-6 (IL-6), interleukin-11 (IL-11), 
oncostatin M (OSM), and Ciliary Neurotrophic Factor (CNTF), 
the only one with neurotrophic activity in this family[41]. Moreover, 
there are growth factors not produced by neurons and glial cells that 
show neurotrophic activity, the Insulin-like Growth Factor 1 (IGF-
1), Acidic Fibloblast Growth Factor (FGF-a or FGF-1) and Basic 
Fibroblast Growth Factor (FGF-b or FGF-2)[42]. A synopsis of NF and 
growth factors with neurotrophic activity is depicted in the figure 1. 
    NGF, the prototype NF, was firstly described as a diffusible factor 
acting on sensory and sympathetic neurons[43-45], but further proved 
to act also on the cholinergic neurons of the basal forebrain[46,47]. 
The discovery of other chemically related molecules, BDNF[48], NT-
3[49], and NT-4/5[50-52] led to the establishment of the Neurotrophin 
family. In the Peripheral Nervous System (PNS) neurotrophins act 
in the regulation of the survival and differentiation of neurons, and 
can influence many processes, including cell body size, innervation 
density, axonal terminal sprouting, dendrite arborization, and 
neurotransmitter synthesis. In the Central Nervous System (CNS) 
neurotrophins have effects mostly on differentiation and modulation 
of neuronal function[53]. Neurotrophins are likewise important for 
protection of PNS and CNS neurons in different conditions such 
as excitoxicity[54,55], hypoxia[56,57], and hypoglycemia[58]. Not less 
important are the neurotrophins functions that extend beyond the 
nervous system, including inflammation[22,37], gametogenesis[15], 
stress[34], learning, and memory[59]. In the heart, neurotrophins 
have important functions during development, postnatal life and 
in pathological conditions. It is demonstrated that the actions of 
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Figure 1 Mammalian Neurotrophic Factors.

neurotrophins on heart have exceeded the neural control of cardiac 
function, and these factors can affect different processes such as 
angiogenesis and cell survival[60].
    The biological effects of neurotrophins are mediated through 
activation of two kinds of membrane receptors, the tropomyosin-
related Tyrosine Kinase (Trk) receptors and the p75 neurotrophin 
receptor (p75NTR). Binding of neurotrophin to Trk receptors causes 
their dimerization and phosphorylation of tyrosine residues. These 
residues form docking sites for adaptor proteins and enzymes that 
couple the receptors to intracellular signaling cascades, which 
ultimately regulate cell growth and survival[61,62]. The specificity 
of each neurotrophin is supposed to be achieved by its selective 
interaction with members of the Trk receptor family. NGF binds 
specifically to TrkA[63,64], BDNF and NT 4/5 bind to TrkB and NT3 
to TrkC[65,66]. NT-3 can also interact through a low-affinity binding 
with TrkA and TrkB[67]. In addition, all neurotrophins bind with a 
similar affinity to the p75 neurotrophin receptor, a member of the 
tumor necrosis factor receptor superfamily. Interesting, p75 signaling 
depends on the cell type, cell differentiation status, neurotrophin 
binding, and availability of intracellular adaptor molecules. This 
unrestrained signaling leads to diverse and even divergent cellular 
responses, like cell survival or apoptosis, neurite outgrowth or 
retraction, myelination, cell cycle regulation, and cell migration[68]. A 
same cell often expresses both neurotrophin receptors Trk and p75, 
and the signals generated by them can either augment or oppose each 
other. The cellular responses to neurotrophins are modulated by this 
dual action, and several studies focuses on the signal transduction 
pathways used by these receptors to promote neurotrophin actions. 
Details of these signaling pathways will not be explored here 
since reviews dealing elegantly with this subject can be found 
elsewhere[62,69,70]. 
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    Typically neurotrophins are target tissue-derived molecules 
sustaining the innervating neurons[71,72]. After binding to Trk or 
p75 receptor in the axolemma the neurotrophin is endocytosed and 
retrogradely transported to the cell soma to promote cell signaling[73]. 
However, anterograde routes have been proposed as a pathway for 
interneuronal signaling[74]. 
    GDNF as well as its related members NTN, PSP and ART are 
dimeric proteins with a cysteine knot structure, which identify 
them as members of the Transforming Growth Factor b (TGF-b) 
superfamily[75]. The GDNF family members act through the 
common receptor tyrosine kinase Ret, and their specificity is 
determined by the GDNF family co-receptor α (GFRα), a class 
of glycosylphosphatidylinositol (GPI)-anchored proteins. GDNF 
binds preferentially to GFRα1, NTN to GFRα2, ART to GRFα3, 
and PSP to GFRα4. According to the receptor-activating model, a 
dimer of the ligand first binds two identical GFRα molecules, and 
this complex interacts with two RET molecules, resulting in tyrosine 
autophosphorylation and then cell signalization[39,76]. 
    The GDNF family members are responsible for the development 
and maintenance of several neuronal populations. In the CNS, 
they are potent survival factors for midbrain dopaminergic 
neurons[77,78], noradrenergic neurons of the locus coeruleus[79,80], 
and for spinal motor neurons[81,82]. The factors have also effects in 
the peripheral nervous system, including autonomic, sensory and 
enteric neurons[75,83]. In the heart GDNF is a candidate to promote 
sympathetic innervation during both development and recovery 
after denervation[30,31,84]. In addition, GDNF family is known to have 
important roles outside the nervous system as GDNF promotes 
ureteric branching during kidney morphogenesis[8], and participates 
from spermatogenesis[85]. 
    CNTF was isolated from chick eye tissue as a survival factor 
for ciliary ganglionic neurons[86]. CNTF is synthesized mostly 
by astrocytes and Schwann cells and stimulates the survival of 
a variety of neurons, including motor, sensory, sympathetic, and 
parasympathetic ones. The high-affinity biological actions of 
CNTF require binding to CNTF receptor complex CNTFRα, 
followed by the recruitment of gp130 and LIFRb membrane signal 
transducing units. Administration of CNTF has been shown to rescue 
different populations of neurons aside from photoreceptors and 
oligodendrocytes. Expression of both CNTF mRNA and protein is 
intensely altered by injury to the CNS or PNS. Although CNTF itself 
lacks a classical signal peptide sequence for secretion, altogether 
these facts suggest that CNTF has a neurotrophic role in response to 
nervous system injury, and it is believed that their protective effects 
occur by some mechanism induced by lesion[41,42]. In the heart, CNTF 
seems to be protective for the cardiac muscle cells during heart 
failure[87,88].
    IGF-1 is a well-known peptide involved mainly in cell metabolism 
and growth. Nowadays its neurotrophic activity is recognized both 
in central and peripheral nervous system. Concerning the CNS, the 
synthesis of IGF-1 is restricted to a few brain regions and in very low 
quantities. However, circulating IGF-1 appears to be an important 
source for the adult brain. IGF-1 exhibits high affinity binding to the 
tyrosine kinase type 1 IGF receptor (IGF-1R). This receptor has a 
distinctive structural feature since it functions as a tetramer of two 
covalently linked- α and β subunits. IGF-1 has been revealed to 
have effects on brain neuron and glial cells, acting as an important 
modulator in neurogenesis, and neuronal plasticity and excitability. 
Recently IGF-1 has been related to some neuropathologies like 
Alzheimer and diabetes[89-91]. About the neurotrophic activity of IGF-
1 in the PNS, the factor promotes survival, growth and regeneration 

of nerves[92]. Regarding the heart, the effects of IGF-1 are more 
related to cardiomyocyte protection from apoptosis and promotion of 
neovascularization[93,94].
    Fibroblast growth factors (FGFs) and their receptors are expressed 
in virtually all-mammalian tissues. This family includes 23 FGF 
different members, ten of them being identified in the brain. Four 
FGF receptor genes, FGFR-1–4, have been identified, and their 
protein isoforms display distinct specificities for the FGF subtypes. 
FGF-1 and FGF-2 are considered to have neurotrophic activity[95]. 
FGF-2 (or basic FGF – bFGF) is highly expressed in cardiomyocytes 
endothelial cells, smooth muscle cells, and fibroblasts in all stages of 
heart development, suggesting that this factor has important effects in 
cardiac functions[96]. 
    CDNF and MANF have been described as neurotrophic factors 
with potent effects on adult midbrain dopaminergic system[97,98] and 
on cortical neurons during brain ischemic model[99]. Different studies 
suggest both a secretion-based neuroprotective and an endoplasmic 
reticulum stress-induced cytoprotective roles for these factors, but 
the relation between these functions are not yet established[97,100,101]. 
Cardioprotective actions were recently attributed to MANF[102-104]. 

HEART DISEASES AND NF
This section describes the main studies showing the participation of 
neurotrophic factors in phenomena related to heart diseases, in order 
to provide an overview on the importance of these molecules and 
their potential as therapeutic tools in these conditions.

Ischemia
Myocardial ischemia or myocardial infarction occurs when the 
cells of the myocardium are deprived from oxygen supply, mostly 
as a consequence of coronary artery disease. Besides the death 
of cardiomyocytes in the ischemic area, there is a heterogeneous 
sympathetic innervation that contributes to arrhythmias and sudden 
cardiac death[105-107].
    NGF is a key factor in the myocardial response to ischemia. In 
this condition, the expression of NGF and its high affinity receptor 
TrkA is elevated in human heart[108], and in rat experimental models, 
mainly in the viable border zone of infarcted area[109]. Besides its role 
in promoting sympathetic hyperinnervation (issue to be discussed in 
the next section), NGF promotes angiogenesis and cell survival[60]. 
In mice, NGF gene transfer to infarcted myocardium improved the 
survival of both endothelial cells and cardiomyocytes, stimulating 
neovascularization and ameliorating myocardial blood flow[108]. 
Cardiomyocyte itself is a source of NGF[31,110], produced and released 
in a stress-regulated manner[111]. Myofibroblasts and macrophages 
were also described as source of NGF in the post infarction heart, 
confirming the contribution of inflammatory cells to elevation of 
NGF levels in this condition[112]. One of the mechanisms by which 
NGF protects the heart from ischemia is the PI3K/Akt pathway 
activation that leads to attenuation of endoplasmic reticulum stress- 
induced apoptosis in cardiomyocytes[113]. 
    Other neurotrophin, BDNF, might also be involved in the overall 
protection of the heart since ischemic insults transmitted to CNS by 
cardiac afferent nerve fibers appears to be able to increase neuronal 
BDNF secretion and its elevation in the peripheral blood[114]. 
Circulating BDNF could then promote the protection of cardiac 
tissue by stimulating expression of prosurvival and proangiogenic 
factors. By the other hand, Halade and collaborators[115] demonstrated 
a decrease of myocardium BDNF in the ischemic early inflammatory 
phase that could be important for both cell survival improvement 
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and attenuation of ventricular remodeling by its effect on the 
kinetics of leukocyte infiltration as well on the angiogenic response. 
Interestingly, p75, the low affinity receptor for neurotrophins can be 
involved in the heterogeneity of innervation process that occurs after 
infarction. Lorentz and collaborators[116] observed that in the viable 
myocardium beyond the infarcted area there are not only areas of 
hyperinnervation but also areas presenting denervation process. The 
authors hypothesized that while binding of NGF to its high affinity 
TrkA receptor stimulates sympathetic hyperinnervation, binding 
of proNGF and BDNF to the p75 receptor could stimulate the 
denervation of peri-infarcted area. 
    Besides neurotrophins, other growth factors have been implicated 
in cardiac protection post infarction. FGF-2 has been proved to be an 
important factor for cell survival, angiogenesis, recovery of infarcted 
area, and contractile function in this condition[117,118]. In rat, the 
administration of exogenous FGF-2 after the onset of ischemia was 
protective against injury, and the factor was suggested for acute local 
therapeutic treatment[119,120]. MANF is another NF recently implicated 
in cardiac protection after ischemia. Studies have demonstrated that 
myocardial ischemia is capable of activate the endoplasmic reticulum 
stress response (ERSR) in cardiomyocytes. In this condition, the 
sarcoplasmic reticulum suffers a calcium depletion that can induce 
the secretion of MANF that in turn can protect cardiomyocytes from 
death by an autocrine or paracrine mechanism[102,104]. Finally, a role 
for IGF-1 in the ischemic heart is considered, although it s effects are 
indirect. It is demonstrated that mesenchymal stem cells treated with 
IGF-1 and transplanted to infarcted heart are able to attenuate both 
cell apoptosis and inflammatory cytokines expression[121].

Arrhythmia
Arrhythmia is an important phenomenon in cardiac patients 
and one of the main causes of sudden death[122]. The autonomic 
nervous system plays an important role in the pathophysiology 
of arrhythmogenesis. The contributions of the sympathetic and 
parasympathetic components are complex and may vary depending 
on the type of arrhythmia. The identification of specific autonomic 
triggers is of great interest since modulation of autonomic activities 
either by stimulation or ablation can control a wide spectrum of 
cardiac arrhythmias[123]. 
    Experimental data have confirmed NGF as a key factor in 
triggering the sympathetic hyperinnervation that appears in 
this condition. The ischemic model is the model of choice for 
studying NF involvement in the arrhythmogenesis. NGF both 
protein and mRNA are increased in the heart of different animal 
models of myocardial infarction[108,109,124,125]. In transgenic mice the 
overexpression of NGF induces hyperinnervation followed by an 
augment in the catecholamine production in the heart[126]. In dogs, 
the NGF infusion to the left stellate ganglion is capable of producing 
nerve sprouting and then cardiac arrhythmogenesis after myocardial 
ischemia[127]. Accordingly, high levels of catecholamine provoke a 
prolongation of the cardiac action potential that could contribute to 
the occurrence of ventricular arrhythmias[128]. The TrkA receptor is 
considered the principal target for NGF during sympathetic nerve 
regeneration in the heart, as its prosurvival and prodifferentiation 
actions are well established[129,130]. Nonetheless, the p75NTR receptor 
has been also implicated in the establishment of arrhythmias since it 
influences both the density and distribution of cardiac sympathetic 
nerves[116,131-133]. While the data support a relation between the 
NGF upregulation and the sympathetic hyperinnervation after 
myocardial infarction, the molecular mechanisms regulating cardiac 
NGF expression during arrhythmia are not fully understood. Some 

studies point for a role of the endothelin (ET-1)/NGF pathway in 
nerve regeneration after myocardial infarction. ET-1 was capable 
of stimulate the NGF expression by cardiomyocytes, that in turn 
induced PC2 cells differentiation in culture. In ET-1-deficient mice 
hearts, it was observed a reduction in NGF expression, followed by 
decrease in the sympathetic innervation and norepinephrine levels. 
Moreover, cardiac overexpression of NGF could rescue the heart 
from the effects of ET-1 deficiency[110,134]. 
    The participation of other NF in arrhythmogenesis is considered, 
but data on it are still scarce. Mabe and Hoover[135] observed 
significant both structural and functional cholinergic deficits in the 
heart of mice deficient in NTN, among them a lower heart rate. The 
authors considered that this condition could make these animals 
more prone to cardiac diseases including arrhythmias. About IGF-
1, some studies showed an inverse association between its levels 
in the serum and QTc intervals, and suggested that individuals 
with low IGF-1 present higher risk for cardiac arrhythmias[136,137]. 
More, the antiarrhythmic properties of IGF-1 were demonstrated in 
rat models of myocardial infarction. The injection of IGF-1 in the 
heart improved intercellular coupling through a higher connexin43 
expression that in turn prolonged the effective refractory period (ERP). 
This effect resulted in attenuation of unfavorable remodeling and 
subsequent arrhythmia[138]. 

Hypertrophy 
Hypertrophy is a heart response to an imbalance in the contractile 
activity, and is associated with increased volume of cardiomyocytes. 
When induced by stimulus like exercise training hypertrophy is 
called physiological, and consists of an induced beneficial adaptive 
heart response. By the other hand, stimulus like hypertension and 
cardiac valvular disease can lead to a pathological hypertrophy due 
to pressure overload[139,140]. While initially pathological hypertrophy 
can preserve the pumping function and reduce ventricular wall stress, 
chronically hypertrophy can lead to the development of arrhythmias, 
heart failure and sudden death[141]. 
    The involvement of IGF-1 in cardiac hypertrophy has long been 
recognized[94,142]. A relation between IGF-1 levels and ventricular 
mass was established in patients with abnormal left ventricular 
diastolic function caused by hypopituitarism[143]. Moreover, Toyozaki 
and collaborators[144] demonstrated that the expression of the 
receptor IGF-1R was augmented in the myocardium of patients with 
hypertrophic cardiomyopathy. A number of experimental studies 
have also demonstrated the role of IGF-1 in heart hypertrophy. The 
administration of IGF-1 provoked an augment in size of cultured 
rat cardiomyocytes via IGF-1R associated to an elevation in the 
expression of muscle specific contractile proteins[145]. Furthermore, 
it was observed that ventricular myocytes of rat hypertrophic hearts 
not only increase the expression of IGF1-R, but also the binding of 
IGF-1 can stimulate re-entry of these cells into the cell cycle[146]. 
More recently, in dog hypertrophic hearts, it was showed that the 
expression of the cell cycle regulatory molecules cyclins is correlated 
with the IGF-1 and its receptor[147]. However, it is discussed the 
way in which IGF acts on the growth of cardiomyocytes. In mice 
with overexpression of IGF-1R and experiencing exercise it was 
observed that IGF-1 caused a physiological cardiac hypertrophy 
through the phosphoinositide 3-kinase (PI3K)-Akt pathway, since 
the factor promoted the translation of key proteins for an adaptive 
response but did not activate the expression of cardiac genes related 
to a pathological response[148]. In this way, it was suggested that the 
IGF-1/IGFIR/AKT pathway regulates cardiomyocyte growth only in 
physiological conditions, while in the pathological conditions there is 
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no AKT signaling and the Endothelin/Endothelin receptor ET1/ERK 
signaling cascade seems to compensate for this absence leading to 
hypertrophy[149].
    FGF-2 is another non-neuronal growth factor widely implicated 
in cardiac hypertrophy. Early in vitro studies demonstrated the 
potential of FGF-2 in the induction of cardiac hypertrophy since 
it is able to stimulate the expression of fetal genes that are re-
expressed in cardiomyocytes during a hypertrophic response[150,151]. 
It was also shown that the pericardial fluid collected from patients 
undergoing cardiac surgery contain high levels of FGF-2 and that it 
is able to promote an increase in protein synthesis and growth of rat 
cardiomyocytes[152]. In animal models of hypertrophy the ablation 
of FGF-2 provided a reduced hypertrophic response, whereas the 
over-expression or exogenous administration of the factor resulted 
in an exacerbation of cardiac hypertrophy[153-158]. Interestingly, FGF-
2 seems to play major role in the process of cardiac hypertrophy 
dependent on the renin-angiotensin system, since in a mouse model 
of hypertrophy induced by pressure overload (aortic coarctation), 
animals not expressing FGF-2 showed a reduction of hypertrophic 
response[154], whereas in a model of cardiac hypertrophy angiotensin-
dependent (renal artery banding) FGF-2-deficient mice showed 
no hypertrophy compared to those expressing the factor[155]. FGF-
2 is translated as high molecular weight (Hi-FGF-2) and low 
molecular weight (lo-FGF-2) isoforms that are located in different 
compartments of the cell indicating different biological activities 
for each of them. Both isoforms are expressed and exert effects in 
the heart, and although still under discussion it is suggested that 
the Hi-FGF-2 isoform has a greater participation in cardiomyocyte 
hypertrophy induction[159-161]. The Mitogen-activated Protein Kinase 
(MAPK) signaling pathway has been pointed as the mediator of 
the hypertrophic response stimulated by FGF-2, and extracellular 
signal regulated kinases (ERKs), p38 as well as c-jun N-terminal 
kinases (JNKs) can be activated in different cell types including 
cardiomyocytes[156,159,162].
    In another way, CNTF and MANF antagonism toward cardiac 
hypertrophy has been recently disclosed. CNTFRα is expressed 
by cardiomyocytes, and its activation reduces left ventricular 
hypertrophy in obese mice[87]. Corroborating this fact, reduced 
expression of CNTFRα was observed in the over-nutrition-
induced heart hypertrophy in sheep fetuses[88]. Concerning MANF, 
preliminary studies showed that in addition to its cytoprotective 
effect, the factor is effective in reducing hypertrophy induced by α1-
adrenergic receptor agonist, phenylephrine[103].
    Neurotrophins are not considered to play an important role in 
hypertrophy. Although NT-3 was proved to induce the expression of 
hypertrophic markers in cardiomyocytes as well as the enlargement 
of these cells, its expression was negatively regulated during 
cardiac hypertrophy induced by both overload pressure and ET-1. 
It is possible that NT3 do not act as a hypertrophic factor in these 
conditions, and its reduction is actually a compensatory response to 
act against hypertrophic changes that occur in these conditions[163]. 

Fibrosis
Cardiac fibrosis is an important aspect of ventricular remodeling 
and is characterized by proliferation and activation of fibroblasts 
associated to an excessive deposition of extracellular matrix 
(ECM) components in the myocardial interstitium. Cardiac fibrosis 
induces adverse changes in cardiac geometry and function, leading 
to the progressive enlargement of the ventricle and, ultimately, to 
congestive heart failure[164-166]. 
    FGF-2 and IGF-1 appear to be the main factor with neurotrophic 

activity involved in the fibrosis process. Data on the role of FGF-
2 in fibrosis are conflicting. Prior studies suggest that FGF-2 could 
have a pro-fibrotic action. Virag and collaborators[157] observed that 
the deletion of FGF-2 provoked a reduced proliferation of fibroblasts 
and ECM deposition in the heart of a mouse model of infarct. By 
the other hand the authors verified that the overexpression of FGF-
2 induced an augment in these processes. The induction of fibrosis 
by FGF-2 was also strongly suggested in a mouse model of pressure 
overload[167]. More recently, it was demonstrated that FGF-2 is able 
to promote atrial fibrosis in the myocardium of patients with atrial 
fibrillation and rheumatic heart disease[168]. In contrast, others studies 
point to an anti-fibrotic effect of FGF-2. In Dahl salt-sensitive rats 
FGF-2 inhibited interstitial fibrosis and then the progression of 
ventricular remodeling[169]. Moreover, it was observed that lo-FGF-2 
was able to attenuating ECM remodeling by myofibroblasts cultured 
within a 3D collagen matrix[170]. Additional studies may be provided 
in order to clarify the different aspects of FGF-2 activities in fibrosis. 
Concerning IGF-1 the studies are scarcer but they point to a role 
of this factor in protecting the myocardium against fibrosis. IGF-1 
administrated or expressed locally in heart resulted in the blockade of 
fibroblast proliferation and resultant fibrosis[171,172].

CONCLUSION
Considerable research to date has implicated the NF in ameliorating 
heart function in many heart diseases. NGF and BDNF are able to 
induce angiogenesis, nerve sprouting and endothelial and cardiac 
muscle cell survival in the ischemic heart. These effects are evoked 
by conventional TrK signaling and the PI3K/Akt pathway to 
attenuate the endoplasmic reticulum stress-induced death. NGF 
and BDNF binding to p75 receptor can act on reducing the density 
of autonomic innervation in the ischemic area. MANF and FGF 
have also been implicated in cardiac muscle cell survival during 
ischemia. FGF and IGF are the main growth factors implicated in 
the cardiac hypertrophy. Distinct neurotrophic peptides are involved 
in a same pathophysiological condition, indicating that might have 
complementary, additive or opposite effects. 
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