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ABSTRACT
The traditional techniques for Heart Rate Variability (HRV) analysis 
in time and frequency domains are often not sufficient to characterize 
the complex dynamics of the heartbeat, since the mechanisms 
involved in cardiovascular regulation probably interact with each 
other in a nonlinear manner. There are already dozens of techniques 
for non-linear evaluation of HRV. However, until now, systematic 
studies of large groups of patients using this approach have not been 
conducted. We present the current state of knowledge in this area 
based on nonlinear variables more prevalent in existing publications. 
It can be concluded that the analysis of HRV in the nonlinear domain 
provides very useful information to characterize the appropriate 
autonomic balance and is a more reliable marker of complications 
and mortality in patients with cardiovascular disease.
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TOPIC HIGHLIGHT
The heart rate variability (HRV) is habitually quantified by using 
methods of the time and frequency domains, which measures the 
overall magnitude of fluctuations in intervals between consecutive 
heartbeats (RR interval) around its average value or the magnitude of 
fluctuations in some predetermined vibration frequencies.
    The traditional data analysis techniques in the time and frequency 
domains are often not sufficient to characterize the complex dynamics 
of generation of the heartbeat since the mechanisms involved in 
cardiovascular regulation probably interact with each other in a 
nonlinear way.
    Then, various attempts have been reported to apply the concept 
of nonlinear dynamics to this problem, arousing increasing 
interest. These new methods related to nonlinear dynamics are, 
in general, clinically more relevant for a better interpretation of 
pathophysiological behavior of HRV under various conditions and, 
consequently, its prognostic value, complementing the information 
obtained with traditional assessments. However, systematic studies 
of large groups of patients using this approach, have not been 
conducted[1-2].
    In a recent publication of the European Society of Cardiology, the 
authors reviewed the literature available from 1996 until December 
2013, looking for relevant articles addressing the use of non-
conventional methods, which had been used in a significant number 
of patients (more than 200 cases) finding only 21 studies from the 
thousands already published. This highlights the importance of the 
issue addressed here, which aims to characterize and quantify the real 
practical use of nonlinear methods for assessing HRV[3-4].
   Nonlinear analysis methods differ from the conventional HRV 
methods because they do not assess the magnitude of variability but 
rather the quality, scaling, and correlation properties of the signals[5]. 
In other words, they are related with the unpredictability, fractability 
and complexity of the signal. 
    The concepts related to chaos theory, the fractal mathematics and 
the dynamic complexity of heart rate variability behavior are still 
far from large application in medical clinical practice, although they 
constitute a fruitful field for research and expansion of knowledge in 
both health and disease[6].



    In particular, it has been demonstrated, for example, that the 
short period fractal-scaling exponent measured by the Detrended 
Fluctuation Analysis (DFAα) method predicts fatal cardiovascular 
events in several populations. The Approximate Entropy (-ApEn) 
also a nonlinear index of dynamic heart rate, which describes the 
complexity of the RR interval behavior has provided information 
about the vulnerability for atrial fibrillation. There are many 
other nonlinear indices such as the Lyapunov Exponent (LE) and 
Correlation Dimension (CD), which also provide information on the 
characteristics of HRV, but their clinical utility has not been fully 
established[6].
    Meyerfeldt et al[7] in 2002 evaluated whether changes in HRV 
represented or not early signs for the occurrence of ventricular 
tachycardia in patients with implantable defibrillators. They analyzed 
1000 RR intervals occurring immediately before the onset of a 
ventricular tachycardia (131 episodes) compared to a control period 
distant of the arrhythmia (74 series) in 63 patients with heart failure, 
and implanted defibrillator device. They found that none of the 
linear parameters was able to detect significant differences between 
groups. However, nonlinear parameters detected short periods of low 
variability prior to the occurrence of tachyarrhythmia suggesting the 
possibility of creating defibrillators sensitive to algorithms based on 
nonlinear dynamics.
    More recently, there has also been an effort in trying to demonstrate 
the effect of gender and age on nonlinear indexes. Beckers et al[5] 
(2005) evaluated 135 women and 141 men (age 18 -71) using Holter 
monitoring system for 24 hours subdividing the analysis into two 
periods: daytime (8 AM-9 PM) and nighttime (11 PM-6 AM). They 
studied variable nonlinear scaling properties like 1 / f slope (where “f” 
is frequency), fractal dimension, and detrended fluctuation analysis 
with short (α1) and long-term (α2) correlations being the nonlinear 
complexity described with correlation dimension (CD), Lyapunov 
exponent (LE), and approximate entropy (ApEn). They found that 
like with the linear variables, nonlinear variables also feature a day-
night variation, except for the CD in the female population. Higher 
nonlinear behavior was evident during the night. No clear differences 
between men and women were found with the nonlinear indexes. 
They concluded that nonlinear indexes decline with age and this 
could be related to the concept of decreasing autonomic modulation 
with advancing age.
    Souza et al[8] (2014) evaluated healthy women aged 18-30 years 
studying the behavior of HRV in response to the postural change 
maneuver, using linear and nonlinear variables. They observed that 
the short-term alpha-1 exponent was significantly increased at all 
moments investigated compared to seat. Increase in the properties of 
short-term fractal correlations of heart rate dynamics accompanied by 
a decrease in the parasympathetic modulation and global HRV was 
observed in response to the postural change maneuver. 
    An interesting and exhaustive historic of the initial studies about 
nonlinear dynamics can be found in Voss A et al[1] (2009).
    We will do from now, a general approach on the current state 
of clinical application and prognostic relevance of the main non-
linear methods for assessing HRV. We will use the classification 
proposed by Bravi A et al[9] (2011). These authors comment that 
the growth and complexity of techniques applicable to the study of 
heart rate variability have made interpretation and understanding 
of variability more challenging. Then after review, carefully, the 
theory and the clinical applications of more than 70 variability 
techniques, they proposed a revised classification for the domains of 
variability techniques, which include statistical, geometric, energetic, 
informational, and invariant types.

de Godoy MF et al . Nonlinearity and Heart Rate Variability

529

    The domains related to Linear Analysis of HRV in that 
classification are the statistical, the geometric and the energetic. The 
domains related to the Nonlinear Analysis of Heart Rate Variability 
are the Informational and the Invariant. In each one of these last two 
domains, we will make some comments about the more prevalent 
ones in published clinical studies.

1. INVARIANT DOMAIN
A. Detrended Fluctuation Analysis (DFA) with α1 and α2 
components
B. Fractal Dimension FD)
C. Hurst Exponent (HE) 
D. Largest Lyapunov Exponent (LLE)
E. Correlation Dimension (CD) 

1A. DFA(α)
The complex physiological signals although typically not stationary, 
they are not random. The Detrended Fluctuation Analysis (DFA) was 
developed by Peng CK et al[10] in 1995 and is used to measure the 
presence or absence of fractal correlation properties. With the aid of 
this method, it is possible to detect the occurrence of intrinsic self-
similarity in certain types of nonstationary time scales[6,10-11].
    Self-similarity means that one subunit of RR intervals resembles 
a series of larger time scale, i.e., there is a long-term correlation 
between RR intervals, in which the intervals in a given time interval 
are partially dependent of previous segments[3]. The mathematical 
concept of this index can be easily found in a large quantity of 
publications[11-13].
    In general are considered two components as part of this index α, 
the short-term (α1) involving correlations from four to 16 heartbeats 
and long-term (α2) involving from 16 to 64 beats. 
    The long-range correlations should correspond to sympathetic 
modulation, whereas short-term correlations should correspond to 
both sympathetic and vagal modulation[5].
    It is considered that alpha coefficient values close to 0.5 ("White 
Noise") imply the absence of correlation between the RR interval and 
consequently greater randomness in the dynamics of the time series. 
Values closer to 1.0 ("1 / f or Pink Noise") have characteristics of 
both random and high correlations, indicating fractal heart dynamics. 
Values close to 1.5 ("Brownian Noise"; integration of "White Noise") 
are associated to signs with strongly correlated behavior[1,14].
    It was observed that an acceptable estimative of the scaling alpha 
exponent can be obtained from the analysis of a data set interval with 
only 256 intervals (equivalent to about 3.5 min RR data in a heart rate 
of 70 beats/min). Therefore, it would be expected that the analysis of 
RR data from an ECG recording period of 10 min, could provide an 
adequate measure of the scaling exponent. However, the alpha value 
obtained from this calculation can be under the influence of both 
the short-term level reflecting the parasympathetic control, as the 
long-term level reflecting the sympathetic control and therefore may 
fail to distinguish the completely parasympathetic and sympathetic 
influences. A separate analysis of both short-term scale and long-
term should cancel the mutual effect and reveal the exact range of the 
scale. Thus, Roy and Ghatak (2013)[15] proposed for analysis of the 
short-term component (α1) to use using only 25 intervals and for the 
analysis of the long-term component (α2) from 30 to N/4 intervals 
but this procedure has not been in widespread use. Bucceletti et al[2] 
(2012) when commenting on the method claim that "A singular ECG 
derivation is recorded continuously and the R-R distance is calculated 
in milliseconds until it is possible to get an amount of 8000 R-R (!), 



that are necessary to assure an adequate interval of time”. As can be 
noted, there are no consensus yet about the adequate interval to use.
    Mäkikallio et al[16], 1998 showed that this dynamic fractal behavior 
of RR intervals, changes in patients with stable angina. They 
compared 38 consecutive patients with stable angina, with a control 
group detecting reduction of fractal correlation in the first group.
    Analysis of the short-term fractal properties have also 
shown greater prognostic power compared to the conventional 
measurements in patients with acute myocardial infarction with or 
without depressed ventricular function[17].
    Makikallio TH et al (1999) using traditional measurements of time 
and frequency domains beyond the analysis of short-term fractal 
properties studied 159 patients post myocardial infarction who had 
depressed ventricular function (EF < 35%) stating that at the end of 
four years of follow-up 72 patients had died (45%). The exponent 
alpha of short-term scale differed significantly when comparing the 
group who survived with the group who died (1.07 ± 0.26 vs 0.90 ± 
0.26; p < 0.001) and none of the conventional variables was able to 
make that separation. Moreover, among all variables, the exponent α1 
at the cut-off < 0.85, was the best single predictor of mortality with 
a relative risk of 3.17 (95% CI 1.96 to 5.15; p < 0.0001) even after 
adjusting for multiple clinical variables[18].
    In obese children, reduction of α1 values when compared to 
normal children may suggest an early loss of fractal dynamics and 
the consequent risk of future development of heart disease[10].
    Buccelletti et al[2] (2012) compared two groups of patients matched 
for age (57 ± 14 years versus 54 ± 20 years), formed respectively 
by 45 individuals who came to the Emergency Department for 
elucidation of chest pain and 20 seriously ill patients hospitalized in 
a ICU after open heart cardiac surgery or treatment of septic shock. 
These values were 0.98 ± 0.31 and 0.76 ± 0.43 for alfa1 with 1.01 ± 
0.09 and 0.99 ± 0.18 for alpha2, respectively.
    Krstacic G et al. (2012) tested the applicability of nonlinear 
methods for HRV performance evaluation in patients with stress-
induced cardiomyopathy (Takotsubo Syndrome or "Broken Heart 
Syndrome") whose pathogenesis is possibly related to acute release 
of large amounts of stress hormones leading to effect known as 
'catecholamine induced myocardial stunning'. Twenty-five female 
patients (60.2 ± 8.3 years) with symptoms and signs of stress-induced 
cardiomyopathy, were identified and included in the study and the 
control group consisted of 50 randomly selected age-matched (mean 
age 63.1 ± 7.2 years) healthy women. The values found for alpha1 
and alpha2 were 1.11 ± 0.05 and 1.18 ± 0.04 for the control group 
and 1.31 ± 0.06 and 1.25 ± 0.05 for the group with cardiomyopathy 
showing a fractal behavior in the controls and a trend to strongly 
correlated behavior in the study group[19].
    What one finds is that regardless of the studied disease or age, and 
even sample size and acquisition methodology, values that deviate 
from the normal value of 1.0 (increasing or decreasing) are associated 
with higher morbid gravity or worse prognosis revealing loss of 
fractal behavior toward random or strongly correlated behavior.
    The above-cited methodological differences could explain some 
of the discrepancies between results found in several studies with 
the index pointing to the need for greater standardization aiming 
comparability of results. 

1B. Fractal Dimension (FD)
Fractals are irregular elements that do not fit in any of the 
conventional geometric figures. As fractals are considered the clouds, 
mountains, coastlines, snowflakes and in the context of this topic, 
the contours of tachograms derived from the heartbeat of healthy or 
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diseased individuals.
    One of the fundamental characteristics of fractals is their dimension, 
called fractal dimension (FD). It is a statistical measure based on an 
algorithm proposed by Katz in 1988[20] which gives an indication of 
how fully a particular element fills the space in which it is located. In 
the case of an RR interval tachogram derived from the heartbeat, that 
algorithm describes the planar extension of the time series.
    FD is a measure of the regularity of a signal. It corresponds to 
the self-similarity of the signal. Thus, the greater the value of fractal 
dimension more irregular will be the signal indicating increased 
complexity or how much the system has in terms of self-similarity. It 
has been linked to vagal modulation of heart rate[5].

1C. Hurst Exponent (HE)
The Hurst exponent (HE) is a useful statistical method for inferring 
the properties of a time series without making assumptions 
about stationarity. Hurst exponent is responsible for a measure of 
predictability of a time series. Hurst exponent values range between 
zero and 1 with higher values indicating a smoother trend, less 
volatility, and less roughness. A value of 0.5 indicates a true random 
walk (a Brownian motion time series). In a random walk, there is no 
correlation between any elements and future element[21].
    An H exponent ≠ 0.5 implies that the time series is fractal. Hurst 
exponent is related to the fractal self-similarity dimension (D) by 
the equation H = 2- D. The method is shown to be robust even for 
relatively short time series (data length < 1,000), obtained from 
human subjects[22-24].
    Values 0 < H < 0.5 indicates anti-persistent behavior, in that 
one can expect whatever direction of change is current, is unlikely 
to continue[25]. In an anti-persistent time series (also known as a 
mean-reverting series) an increase will most likely be followed by 
a decrease or vice-versa (i.e., values will tend to revert to a mean). 
This means that future values have a tendency to return to a long-
term mean. A value 0.5 < H < 1 indicates persistent behavior. In 
a persistent time series, an increase in values will most likely be 
followed by an increase in the short term and a decrease in values 
will most likely be followed by another decrease in the short term. 
For pink noise, H = 1. H is directly related to fractal dimension, D, 
where 1 < D < 2, such that D = 2 - H. Alternatively the local Hurst 
Exponent is related to the exponent αof the DFA method by the 
relationship α= 1+ H[26].
    Krstacic G et al[19] (2012) testing the applicability of nonlinear 
methods for HRV performance evaluation in patients with stress-
induced cardiomyopathy (Takotsubo Syndrome or "Broken Heart 
Syndrome") evaluated twenty-five female patients (60.2 ± 8.3 years) 
with symptoms and signs of stress-induced cardiomyopathy and 50 
randomly selected age-matched (mean age 63.1 ± 7.2 years), healthy 
women, employing a measure of the Hurst exponent. The value found 
for the control group was 0.84 ± 0.05 and 0.58 ± 0.09 for the group 
with cardiomyopathy (P < 0.001). The findings are in agreement with 
the expected since Random Brownian motion produces the value H 
= 0.5 (uncorrelated events) and an exponent H other than 0.5 implies 
that the time series is fractal.

1D. Largest Lyapunov Exponent (LLE)
The Lyapunov exponent is a non-linear measure that quantifies how 
chaotic is the system. Presence of positive LLE Indicates chaotic 
system sensitive to the initial conditions. Periodic signals will have 
an exponent of zero. It has limited applicability because it requires 
the use of long and stable time series, which is often impossible to 
get in biological systems[6,27].



    The Lyapunov exponent Measures the "Butterfly Effect", or the 
changes in the final results in relation to changes in initial data, even 
though these are very small. Mathematically, the more the result is 
close to one, the greater the chaotic pattern (related to health and 
homeostasis), and the closer to zero, the greater is the linear pattern 
(related to disease).
   Selig FA et al (2011) studied Heart Rate Variability in preterm 
(PTN) and term neonates (TN) using linear and nonlinear variables. 
Among the nonlinear variables, Lyapunov Exponent in PTN was 
significantly different from TN, with P-value < 0.001. Still, regarding 
absolute values, the TN group had mean LE values closer to 1 than 
the PTN group; this fact is explained by the probable immaturity of 
the autonomic nervous system in the PTN group, with more linear 
time series than the term neonates[28].

1E. Correlation Dimension (CD)
The correlation dimension gives the information about the number 
of independent functional components necessary to describe the 
underlying system and the degree of nonlinear coupling between 
these components. The correlation dimension is a measure that 
overcomes the limitations of the need for large time series since it 
allows evaluation of short series and also non-stationary[6].
    In biological systems, the higher the CD is, the more degrees of 
freedom the system has and, therefore, the greater range of possible 
adaptive responses are present. Correlation dimension is a useful 
measure of self-similarity of a signal. Correlation dimension will 
have higher value if RR intervals vary more and it decreases when 
autonomous balancing shifts towards sympathetic regulation. 
    There is also an inverse relationship with age with higher values in 
adolescent group (8 to 17 years) and lesser values starting with age 
group of 22 to 35 years due to increased sympathetic activity[29].

2. INFORMATIONAL DOMAIN
A. Approximate Entropy (ApEn)
B. Sample Entropy (SampEntropy)
C. Shannon Entropy (ShanEntropy) 
D. Multiescalar Entropy (MSE)

2A. Approximate Entropy (ApEn)
ApEn a widely used nonlinear tool to analyze biological data. It was 
proposed by Pincus SM (1991)[30] and quantifies the likelihood that 
runs of patterns, which are close, will or not be followed by additional 
similar observations in subsequent incremental comparisons[31-33]. 
    In brief, given a time series with N points (SN), Approximate 
Entropy [ApEn(SN, m, r)], is approximately equal to the negative 
average natural logarithm of the conditional probability that two 
sequences that are similar for m points (where m is called the 
embedding dimension) remain similar, within a tolerance r, at the 
next point[31-32,34].
    It can be used to assess the complexity, randomness or 
unpredictability of fluctuations in a time series. High values of ApEn 
indicate high irregularity and complexity in time-series data[1,5].
    ApEn lack two important expected properties. First, ApEn is 
heavily dependent on the record length and is uniformly lower than 
expected for short records. Second, it lacks relative consistency. That 
is, if ApEn of one data set is higher than that of another it may not 
remain higher for all conditions tested so causing difficulty when 
comparisons are needed[6,34].
    With regard to its relationship with the autonomic nervous system, 
it is said that ApEn is mostly linked with vagal modulation[5]. 
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Yeragani et al[33] (2005) have shown that ApEn correlates significantly 
with the HF power time series and can be regarded as a nonlinear 
measure of cardiac vagal function. 
    Krstacic G et al[19] (2012) studied with nonlinear methods the 
behavior of HRV in patients with stress-induced cardiomyopathy 
(Takotsubo Syndrome or "Broken Heart Syndrome") evaluating 
twenty-five female patients with Symptoms and signs of stress-
induced cardiomyopathy and 50 randomly selected age- matched 
healthy women employing the measurement of approximate entropy. 
The value of ApEn found for the control group was 1.10 ± 0:11 and 
0.92 ± 0.12 for the group with cardiomyopathy (P < 0.001). These 
findings agree with the expected since larger ApEn values correlate 
with increased complexity in the system.

2B. Sample Entropy (SampEntropy)
As mentioned above, the results for the Approximate Entropy 
rely heavily on the sample size and are relatively inconsistent. To 
circumvent these drawbacks Richman JS and JR Moorman (2000) 
developed a new related measure of time series regularity that they 
called sample entropy (SampEn)[34].
    SampEn displays the property of relative consistency in situations 
where ApEn does not. That is, if one record shows lower SampEn 
than another with one set of values of m and r, it also shows lower 
SampEn with different values.
    Low SampEn characterizes regular time series, whereas high 
SampEn characterizes random time series. 
    Lake DE et al [35] (2002) evaluated 89 infants admitted 
consecutively to the NICU over a period of 9 months with Sepsis 
or sepsis like illness. SampEn was significantly associated with 
upcoming sepsis and sepsis like illness (ROC area 0.64, 95% CI 0.56-
0.74, P = 0.001). Moreover, SampEn significantly added diagnostic 
information to the variables gestational age and birth weight (P < 
0.001). 
    Porta A et al[36] (2007) studied SampEn during graded head-
up tilt test in 17 healthy nonsmoking humans (age from 21 to 54 
years, median = 28; 7 women and 10 men) over short heart period 
variability series (near 250 cardiac beats). They found that SampEn 
showed a progressive decrease of complexity as consequence 
of the tilt table inclination. producing a progressive shift of the 
sympathovagal balance toward sympathetic predominance through a 
sympathetic activation and vagal withdrawal.
    Bay et al[37] (2009) evaluated in sixteen healthy female college 
students with a mean ± SD age of 23.8 ± 2.7 yrs. and body mass 
index of 20.8 ± 1.2 kg/m2, complexity measures along with the 
spectral components of HRV during both the follicular phase (day 
11.9 ± 1.4) and the luteal phase (day 22.0 ± 1.4). SampEn and high 
frequency (HF) components decreased from the follicular phase to 
the luteal phase, whereas normalized low frequency (LF) components 
and the LF-to-HF ratio as well as resting HR increased. 
    Mani et al (2009)[38] studied eighty patients with cirrhosis [53 
men, 27 women; mean (± 1SD) age 54 ± 10 year], classified as 
neuropsychiatrically unimpaired or as having minimal or overt 
hepatic encephalopathy, and 11 healthy subjects, using nonlinear 
analysis of HRV. They found significant reduction in SampEnt 
in liver disease group compared to healthy subjects (2.33 ± 0.67 
versus 2.89 ± 0.52; P < 0.01) and association with the severity of the 
condition with SampEnt values in Child A, B and C respectively 2.47 
± 0.69; 2.14 ± 0.55 and 2.05 ± 0.60. 
    The improved accuracy of SampEn statistics should make them 
useful in the study of experimental clinical and other biological time 
series.



de Godoy MF et al . Nonlinearity and Heart Rate Variability

532

doi:10.1155/2012/219080).
3 Sassi R, S Cerutti, Lombardi F, Malik M, Huikuri HV, Peng CK, 

Schmidt G, Yamamoto Y, Document Reviewers, Gorenek B, Lip 
GH, Grassi G, Kudaiberdieva G, Fisher JP, Zabel M, Macfadyen 
R. Advances in heart rate variability signal analysis: joint position 
statement by the e-Cardiology and the ESC Working Group Eu-
ropeanHeart Rhythm Association co-endorsed by the Asia Pacific 
Heart Rhythm Society. Europace DOI: http://dx.doi.org/10.1093/ 
europace/euv015 First published online: 15 July 2015

4 Task Force of the European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology. Heart rate 
variability. Standards of measurement, physiological interpreta-
tion, and clinical use. Eur Heart J. 1996 Mar; 17(3): 354-381

5 Beckers F, Verheyden B, Aubert AE. Aging and nonlinear heart 
rate control in a healthy population. Am J Physiol Heart Circ 
Physiol 20026; 290: H2560 –H2570, First published December 
22, 2005; doi:10.1152/ajpheart.00903.2005.

6 Huikuri HV, Makikällio TH, Perkiomaki J. Measurement of heart 
rate variability by methods based on nonlinear dynamics. J Elec-
trocardiol. 2003; 36. Suppl: 95-99

7 Meyerfeldt U, Wessel N, Schutt H, Selbig D, Schumann A, Voss 
A, Kurths J, Ziehmann C, Dietz R, Schirdewan A. Heart rate vari-
ability before the onset of ventricular tachycardia: differences 
between slow and fast arrhythmias. Int J Cardiol. 2002 Aug; 84(2-
3): 141-151

8 Souza AC, Cisternas JR, de Abreu LC, Roque AL, Monteiro CB, 
Adami F, Vanderlei LC, Sousa FH, Ferreira LL, Valenti VE. Frac-
tal correlation property of heart rate variability in response to the 
postural change maneuver in healthy women. Int Arch Med. 2014 
May 15; 7: 25. doi: 10.1186/1755-7682-7-25. eCollection 2014

9 Bravi A, Longtin A, Seely AJE. Review and classification of 
variability analysis techniques with clinical applications. Biomed 
Eng Online. 2011; 10: 90. Published online 2011 Oct 10. doi: 
10.1186/1475-925X-10-90 

10 Vanderlei LCM, Pastre CM, Freitas Júnior IF, Godoy MF. Frac-
tal correlation of heart rate variability in obese children. Au-
tonomic Neuroscience. 2010; 155(1-2): 125-129 doi:10.1016/
j.autneu.2010.02.002

11 Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification 
of scaling exponents and crossover phenomena in nonstationary 
heartbeat time series. Chaos. 1995; 5(1): 82-87 

12 Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A. Compari-
son of detrended fluctuation analysis and spectral analysis for 
heart rate variability in sleep and sleep apnea. IEEE Transactions 
on Biomedical Engineering. 2003; 50: 1143-1151. doi: 10.1109/
TBME.2003.817636. doi: 10.1063/1.166141

13 Melillo P, Bracale M, Pecchia L. Nonlinear Heart Rate Variability 
features for real-life stress detection. Case study: students under 
stress due to university examination Biomed Eng Online. 2011; 
10: 96. Published online 2011 Nov 7. doi: 10.1186/1475-925X-10-
96

14 Stubsjoen SM, Bohlin J, Skjerve E, Valle PS, Zanella AJ. Apply-
ing fractal analysis to heart rate time series of sheep experiencing 
pain. Physiology & Behavior. 2010; 101: 74-80

15 Roy B, Ghatak S. Nonlinear Methods to Assess Changes in Heart 
Rate Variability in Type 2 Diabetic Patients Arq Bras Cardiol 
2013; 101(4): 317-327

16 Mäkikallio TH, Ristimäe T, Aeraksinen KEJ, Peng CK, Goldberg-
er AL, Huikuri HV. Heart rate dynamics in patients with stable 
angina pectoris and utility of fractal and complexity measures. Am 
J Cardiol 1998; 81: 27-31

17 Tapanainen JM, Thomsen PE, Køber L, Torp-Pedersen C, Mäki-
kallio TH, Still AM, Lindgren KS, Huikuri HV. Fractal analysis 
of heart rate variability and mortality after an acute myocardial 
infarction. Am J Cardiol. 2002 Aug 15; 90(4): 347-352

18 Mäkikallio TH, Høiber S, Køber L, Torp-Pedersen C, Peng CK, 
Goldberger AL, Huikuri HV. Fractal analysis of heart rate dy-

2C. Shannon Entropy (ShanEntropy)
Shannon Entropy is usually estimated after the transformation of 
the dataset into bins or a symbolic sequence. Counting the relative 
frequency of each bin or word, the Shannon entropy will be 
equivalent to the sum of the relative frequencies weighted by the 
logarithm of the inverse of the relative frequencies (i.e. when the 
frequency is low, the weight is high, and vice versa)[9].
    However, when reading a paper about utilization of Shannon 
Entropy as a complexity measure we must to be aware about the 
methodology of the data extraction. Therefore, when SE is derived 
from the Symbolic Dynamic Analysis method, it is true that the 
higher the values more complexity is present and from the clinical 
point of view, the more physiological are the conditions and probably 
healthier is the patient. In the other hand when SE is derived from 
the Recurrence Plot method, the higher are the values, the less 
complexity will be present and from the clinical point of view, less 
physiological will be the conditions and probably more diseased 
will be the patient. The explanation of this apparent paradox is 
the following: with Symbolic Dynamic, SE is a measure of the 
complexity of the possible “words” of the system and then, if we 
have more words we have more complexity. With Recurrence Plots, 
SE is a measure of the complexity of the “diagonals” present in the 
system and as diagonals are representing the determinism, the higher 
the values are, more determinism and so more linearity and less 
homeostasis. 
    To illustrate this different interpretation, we present below, the 
works of Guo R et al[38] (2002) and Kunz VC et al[39] (2011). In the 
first study, the authors compare, using Recurrence quantification 
analysis (RQA), the pulse morphological changes in 37 inpatients 
with coronary heart disease and 37 normal subjects. Shannon 
entropy of the frequency distribution of diagonal line lengths showed 
significantly higher values for patients with CHD (4.464 ± 0.194) 
than for normal subjects (4.262 ± 0.199; P < 0.05). In the second 
study, the authors compare, using Symbolic Analysis the presence 
of autonomic dysfunction in patients with coronary artery disease 
(CAD) and to compare them with normal subjects. A sample of 52 
men (mean age 54 ± 5.39 years) was allocated into three groups: 
obstructive CAD ≥ 50% (CAD + n = 18), obstructive CAD < 50%, 
(CAD- n = 17) and apparently healthy controls (CG n = 17). The 
CAD+ group presented lower SE values compared to CAD- and 
control groups (3.28, 3.51 and 3.53, respectively, p < 0.05). 

CONCLUSION
It can be concluded that the analysis of HRV in the nonlinear domain 
provides very useful information to characterize the appropriate 
autonomic balance and is a more reliable marker of complications 
and mortality in patients with cardiovascular disease.
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