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INTRODUCTION
Sick sinus syndrome (SSS), also known as sinus node dysfunction 
(SND), includes sinus arrest, sinoatrial block, bradycardia and tachy-
cardia and other arrhythmia manifestations. The syndrome occurs at 
all ages, including newborns, with the highest incidence among peo-
ple aged over 65 years. Previous population studies have shown that 
older adults are at increased risk of SSS[1-3]. At present, SSS remains 
an incurable and progressive disease. Traditional treatment methods 
include drug therapy and nondrug therapy. Drug therapy includes the 
use of western medicine and traditional Chinese medicine to stabilize 
the heart rate. Nondrug therapy mainly involves the use of electronic 
pacemaker implantation. This article aims to summarize the aetiology 
and pathogenesis of SSS, discuss the advantages and disadvantages 
of traditional treatment methods, and focus on the biological pacing 
strategies based on gene and cell therapy. 

CLINICAL MANIFESTATIONS AND AETIOL-
OGY
1. Clinical manifestations
The onset of SSS is insidious, and the course of development is 
mostly slow. It can take 5-10 years or even longer from the onset of 
symptoms to severe symptoms. The main clinical manifestation of 
SSS is bradycardia; as the disease progresses, cardiogenic cerebral 
ischaemic syndromes can appear, such as dizziness, darkening or 
syncope, and even SSS or sudden death. Cardiac abnormalities are 
characterized by palpitations, congestive heart failure and angina 
pectoris, and these three major cardiac symptoms are interrelated. 
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ABSTRACT
Sick sinus syndrome (SSS) is an organic disorder of the sinoatrial 
node and its adjacent tissues, which causes problems in sinus 
node pacing function and sinus node conduction, thus leading to 
arrhythmias and multiple symptoms. The aetiology of the syndrome 
is complex, and the pathogenesis is unknown. Traditional therapies 
for SSS include drug therapy and pacemaker implantation, which 
have only partially succeeded clinically and cannot cure SSS. Hence, 
there is an urgent need to develop targeted therapies in order to treat 
SSS. This article aims to summarize the aetiology and pathogenesis 
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Oliguria, loss of appetite and muscle soreness also occur[2].

1.2. Aetiology
SSS is not caused only by a single factor. Different pathophysiological 
mechanisms can cause similar disease phenotypes. Table 1 lists 
the causes of SSS. The causes of SSS are both endogenous and 
exogenous. Endogenous causes include sinoatrial node (SAN) 
degenerative fibrosis, coronary heart disease, cardiomyopathy, 
myocarditis, pericarditis, hypertension, invasive disease and 
congenital heart disease. Exogenous causes include drug effects 
(β-receptor blockers, calcium antagonists, digoxin and antiarrhythmic 
drugs), vagus nerve tension, electrolyte disturbance, surgical 
injury, hypothyroidism and increased intracranial pressure[4-9]. 
The endogenous aetiology is usually irreversible; once it occurs, 
an electronic pacemaker is usually implanted. However, some 
exogenous causes of SSS are reversible. For example, the symptoms 
can be improved by discontinuing the patients’ medication. SSS 
can also be familial, and mutations in genes such as HCN4, SCN5A, 
MYH6 and CACNA1C can cause SSS[10-14].

TRADITIONAL TREATMENT
SSS has no standard treatment. The clinical treatment principle 
is to accurately determine the cause of this condition and treat 
it symptomatically. For patients with SSS, the cause should be 
identified and corrected, the normal function of the sinus node 
should be restored, and further development of the disease should be 
prevented. There are two main types of clinical treatment for SSS: 
drug therapy and pacemaker implantation.

1. Drug treatment
At present, there is no clinical consensus on the optimal medication 
regimen for SSS. Therefore, drug treatment is often difficult, it lacks 
long-term therapeutic effects, and various antiarrhythmic drugs 
often have significant and intolerable side effects. It is necessary to 
determine the timing of treatment, control the dose of the medication, 
and avoid using medications that can slow down the heart rate (such 
as β-blockers, verapamil, digitalis and other drugs) during drug 
treatment. For patients with mild SSS, no special treatment is needed; 
only regular follow-up observations are required[15]. When the 
patient develops bradycardia and obvious symptoms, conventional 
drugs (such as atropine, aminophylline, isoprenaline and nicotinyl) 
can be used to increase the heart rate. Intravenous atropine and 
β-stimulants, although effective in the short term, are harmful 
when used long term. Their side effects include cardiotoxicity and 
ventricular arrhythmias[16]. For patients with slow-fast syndrome, 
it is difficult to manage the bradycardia and tachycardia. Digitalis 
can be used in small doses when necessary to prevent or reduce 
the occurrence of tachyarrhythmia. Small doses of digitalis do not 
affect the sinus node and the atrioventricular conduction system. For 
neonatal patients in whom immediate implantation of a pacemaker 
is difficult, the results of a recent study[17] suggest that procaterol 
is an effective treatment for infants and young children with SSS. 
After the diagnosis of SSS, medications were administered to the 
baby boy in a forementioned study through the gastrointestinal 
enteral route. The patient’s condition was well controlled, and 
pacemaker implantation was no longer required. Cilostazol is 
effective for the treatment of symptomatic SSS and can stabilize the 
condition by increasing the heart rate, thereby preventing the need 
for permanent pacemaker implantation[18]. In Japan, cilostazol has 
been widely accepted for the clinical treatment of bradycardia[19]. In 
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Table 1 Causes of Sick Sinus Syndrome.

Degenerative fibrosis Pharmacologic agents Familial SSS 

Aging Digitalis SCN5A, HCN4, 
MYH6, CACNA1C

Atrial tachyarrhythmias Digoxin
Associated with atrial 
myopathy β-Blockers

Amyloidosis Calcium channel blockers

Connective tissue diseases Antiarrhythmics

Hemochromatosis Sympatholytics

Sarcoidosis Cimetidine
Hereditary muscle 
dystrophies

Clonidine, methyldopa, 
reserpine

Myocarditis Lithium, phenothiazine, 
amitriptyline

Valvular heart disease Metabolic disorders

Heart failure Hyperkalemia

Hypertension Hypocalcemia

Diabetes Hypothermia

Obesity Hypoxia

Obstructive sleep apnea Acute ischemia

Pediatric causes Surgical injury

Congenital abnormalities
Sinoatrial nodal artery 
deficiency
Infective
Rheumatic fever

Chagas disease

Diphtheria

addition, traditional Chinese medicine and decoction treatment, and 
acupuncture and other methods have increasingly been recognized in 
clinical practice because of their significant effects and few adverse 
effects[20]. Shenxian-shengmai oral liquid is a kind of Chinese patent 
medicine that is used in the treatment of patients with mild SSS[21-

24]. Traditional Chinese medicine research studies have shown that 
ginsenoside and calcium dibutyryladenosine can effectively treat 
SSS[25]. Although the efficacy of traditional Chinese medicine, 
acupuncture and other treatment methods in improving sinus node 
function was only reported in clinical studies, these methods were 
still applied in the clinical setting and was proven to be effective. 
However, pharmacological research on the drug and its mechanism 
of action are still in a fuzzy state.

2. Pacemaker implantation 
Since the use of electronic pacemakers in the clinical setting[26-27], 
several patients’ lives have been saved. Permanent pacemaker 
implantation is currently the only effective treatment for SSS and 
the most common cause of pacemaker implantation[28-29]. The 
pacemaker’s battery is usually placed in the subcutaneous tissue 
of the chest or abdomen, and works through pulse generators and 
electrode wires[20]. Despite the success in the use of electronic 
pacemakers, there are still disadvantages that cannot be ignored, 
including inability to adjust autonomously, limited battery life, lead 
displacement, possibility of infection and bleeding, and vulnerability 
to electromagnetic interference. Moreover, the use of pacemakers in 
paediatric patients remains a challenge[26,30-32].
    There has been controversy regarding the choice of pacemaker 
mode (single-chamber atrial pacing (AAIR) or dual-chamber 
pacing (DDDR)) in patients with SSS. Owing to the development 
of pathological SSS, atrioventricular block and atrial fibrillation 
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Figure 1 SAN is a multicompartment structure, composed of a head / centre 
and tail / periphery region, and several specialized conduction pathways. 
The schematic above represents 3D reconstruction of SAN (blue) with five 
SACPs (yellow). Modified from[44].

are common. Although a large number of studies have reported the 
advantages of single-chamber atrial pacing in patients with SSS, this 
method is rarely used. In daily clinical practice, because of the fear of 
high atrioventricular block after pacemaker implantation, in order to 
improve the prognosis, most patients with SSS choose a conventional 
dual-chamber pacemaker. Does every SSS patient need a dual-
chamber pacemaker? Is it more reasonable to choose a dual-chamber 
pacemaker (DDDR) or a single-chamber pacemaker (AAI)? The 
DANPACE study is a multicentre randomized study conducted in 
Denmark. A total of 1,415 patients with SSS were randomly divided 
into an AAIR group and a DDDR group. The average follow-up was 
5.4 ± 2.6 years. The results suggest that for SSS patients, when there 
is no significant difference in all-cause mortality when receiving 
AAIR and DDDR treatment, DDDR treatment should be preferred 
to reduce the risk of atrial fibrillation and re-pacing[33]. However, 
recent studies[34] have shown that AAIR pacing should be considered 
in patients with SSS without atrioventricular block. Therefore, for 
patients with SSS who require a permanent pacemaker implantation, 
an appropriate pacing method should be selected after the intracardiac 
electrophysiological examination. Patients who receive a permanent 
pacemaker are at a higher risk for atrial fibrillation; hence, frequent 
pacemaker examinations should be performed. Patients with a 
history of atrial fibrillation should also be assessed for the risk of 
stroke and bleeding, and make informed decisions about the use of 
anticoagulants.

NEW TREATMENT STRATEGIES
Drugs and electronic pacemakers have only achieved partial success 
in treating sick sinus syndrome. At present, there is an urgent need 
to develop targeted therapies based on pathogenesis to treat sick 
sinus syndrome. Recent studies have explored the feasibility and 
applicability of biological pacing, demonstrating the potential utility 
of gene- and cell-based therapy for sick sinus syndrome[35-40]. SAN is 
the main pacemaker of the heart, and SSS is associated with structural 
and functional abnormalities of SAN. A better understanding of the 
genes that regulate the development and function of SAN is essential 
for the development of biological pacemakers. Therefore, before 
introducing biological pacing strategies, we first introduce tissue 
and organ lesions and the relationship between gene regulation and 
disease occurrence.

1. Tissue and organ diseases
SAN is the main pacemaker of the heart. It is located at the junction 
of the superior vena cava and the right atrium. It is centred on the 
SAN artery and can regulate the heart’s beating frequency[41]. SAN 
includes the head, centre, tail, peripheral areas and several sinus node 
conduction pathways (SACPs). The ‘guide pacemaker’ site, the first 
activated site of SAN, is usually located in the central part of SAN, 
and SACPs are considered to be the preferential conduction pathway 
of electrical impulses from SAN to the atrial myocardium[42-45] 
(Figure 1). Sinus pacing and conduction abnormalities can cause 
arrhythmias, and sick sinus syndrome is associated with structural 
and functional abnormalities of SAN.
    A mature SAN is composed of different types of cells, including 
cardiac pacing cells and a large number of nonpacing cells. Pacing 
cells are usually assigned into clusters surrounded by fibroblasts and 
a variable extracellular matrix (fibrous tissue). When the SAN pacing 
cells are gradually replaced by fibrous tissue, the number of pacing 
cells will decrease, and their normal pacing function will gradually 
decrease[55,46-47]. With age, the increase in pathological fibrosis in SAN 
and SACPs interrupts the tight coupling between SAN myocardial 

cells and affects the interconnections between cells, which is 
essential for the stable pacing of SAN. This will usually result in 
bradycardia and conduction block. Sinus node fibrosis is involved in 
the pathogenesis of SSS[3]; SAN tissue fibrosis affects the generation 
and conduction of SAN action potentials, leading to SSS[5,48]. The 
transient receptor potential cation channel M7 (TRPM7) is associated 
with cardiac fibrosis. Zhong et al[49] found that SAN fibrosis is 
regulated by the Ang II/TRPM7/Smad pathway in SSS. TRPM7 is a 
potential target for sinus node fibrosis treatment in SSS.
    Changes in connexin expression in the SAN region accompanied 
by ageing are also associated with SND[5]. Connexins form gap 
junctions between adjacent cells and play an important role in 
pulse propagation between cells and even throughout the heart[50]. 
Compared with atrial tissues, several key ion channel protein 
subtypes were expressed in human SAN with a higher expression of 
connexin Cx43. This uneven expression promotes its autonomy and 
protects it from arrhythmias[7,44].
    In the course of cardiac surgery, when SAN or surrounding tissue 
is directly damaged, an abnormal sinus node function can occur after 
surgery and cause arrhythmia. Heart disease or immune disease may 
cause the SAN cells to gradually die due to ischaemia and hypoxia, 
eventually leading to the decline in SAN function and thus SSS[51].

2. Gene regulation and disease occurrence
2.1. Transcription factors and SSS
The abnormal development of SAN will lead to the occurrence 
of SSS. Transcription factors related to the development of SAN 
include Tbx18, Tbx3, Shox2, Isl1, Nkx2-5, and Pitx2[45,52-58]. Tbx18 
is an important transcription factor during embryonic development 
and plays an important role in the formation and development of 
SAN. Tbx18 controls SAN head formation, but Tbx18 deletion does 
not affect tail development. Tbx3 is also expressed in SAN. During 
heart development, Tbx3 is essential for pacemaker and conduction 
system development[59]. During Tbx18 controlling head formation, 
Tbx3 further regulates the pacing gene program. Shox2 is involved 
in the differentiation of pacing cells. During cardiac development, 
Shox2 loss can cause sinus node developmental disorders, which 
is manifested by bradycardia. Shox2 works by inhibiting Nkx2-
5 and simultaneously activating Isl1 expression. The transcription 
factor Isl1 plays a role downstream of Shox2, is necessary for SAN 
premise cell proliferation, and is expressed in both embryonic and 
adult SAN[60-61]. Under normal circumstances, SAN is developed 
unilaterally, and Pitx2 directly inhibits the expression of Shox2 
and upregulates two microRNAs that can inhibit the expression 
of the SAN gene[58]. In Pitx2-deficient embryos, SAN develops 
bilaterally[24]. The formation of SAN is strictly regulated by a network 
of transcription factors. These transcription factors present a dynamic 
and unique expression pattern in the working myocardium of SAN 
and its surrounding atria, in the differentiation and specialization of 
pacemaker cells, and in maintaining pacemaker characteristics and 
functions. However, under physiological and pathological conditions, 
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Gene biopacing refers to the use of genetic engineering technology to 
introduce the target gene into the damaged autonomic rhythm point 
or the tissue of the conduction system. By introducing the gene to 
express the corresponding protein or inhibit the expression of certain 
genes in the body, the normal cardiac pacing or conduction function 
will be restored.
    Pacing-like cells can be induced by transcription factor 
recoding[86-88]. For example, the TBX18 gene, which is essential 
for the development of the SAN head, is an important gene that 
can induce the production of pacing-like cells. Kapoor et al. [87] 
demonstrated the transformation of rodent cardiomyocytes into SAN 
cells in vitro and in vivo through the expression of TBX18. TBX18 
was overexpressed in adult guinea pig myocardium, and transfected 
cardiomyocytes showed morphological and electrophysiological 
characteristics of SAN cells. Hu et al[89] used a minimally invasive 
method to inject a viral vector carrying TBX18 into a pig heart 
to develop a ‘biological pacemaker’ that can treat heart rhythm 
abnormalities, and they proved that the pacemaker is sufficient to 
support daily life needs. Overexpression of the TBX18 gene enhances 
the function of the atrial pacemaker in SSS rats, suggesting that the 
gene therapy targeting TBX18 may be integrated in human sick sinus 
nodes[90,91]. The pacemaker function was restored in the affected 
patient, thereby avoiding the need for an electronic pacemaker. 
Bakker et al[86] constructed Tbx3-overexpressing mice and isolated 
adult mouse cardiomyocytes for analysis. They found that the 
working myocardium had effectively transformed into pacemaker 
cells, and the expression of related genes encoding connexin and 
cardiac sodium channels was all suppressed. Although the results of 
reprogramming based on transcription factors are encouraging, two 
points are worth noting: one is the heterogeneity and the other is the 
limited duration of the phenotype after successful reprogramming. 
However, these problems may be solved by the long-term 
overexpression of nonimmunogenic vectors such as the adeno-
associated virus AAV.
    Biological pacing can be achieved by overexpressing ion channel-
related genes in vivo[92,93]. For example, the role of HCN channel 
overexpression in the myocardium has been widely studied as a 
biological pacemaker strategy with some success[35,94,95]. Morris[96] 
and others found that the use of adenovirus-mediated overexpression 
of HCN2 and HCN212 genes can accelerate the pace of atrial-
assisted pacemakers. This study provides theoretical proof for a new 
biological pacing strategy. The approach will help treat bradycardia 
in patients with SSS.

3.2. Cell-based biopacing
Cell-based artificial biological pacemakers can use stem cells to 
induce pacing-like SAN cells. They can be divided into embryonic 
stem cells (ESCs), induced pluripotent stem cells (iPSCs) and 
mesenchymal stem cells (MSCs) according to their source. In 
addition, cell therapy methods include the use of cells as a delivery 
tool for gene construction[97,98]. At present, gene transfection vectors 
mainly include adenovirus, adeno-associated virus, lentivirus, 
liposome and electroporation. Among them, the most commonly used 
is adenovirus.
    ESCs and iPSCs can differentiate into cardiomyocytes, can 
show intrinsic pacemaker activity, and can pace ventricular muscle 
in vivo[99-102]. Mummery et al[103] used human ESCs to induce 
differentiation in the cardiac muscle tissue with pacing function. Zhu 
et al[104] found that the intervention of the NRG-1β/ErbB signalling 
pathway in ESCs can increase the expression of Tbx3, thereby 
increasing the expression of sinus node-related genes, promoting the 

the role of these pacemaker-specific transcription factors in the 
structural and functional homoeostasis of adult SAN still needs to be 
explored in more detail[45].

2.2. Ion channel-related genes and SSS
The hyperpolarization-activated cyclic nucleotide-gated cation 
channel (HCN) is a kind of cyclic superfamily cation channel. This 
channel plays an important role in regulation of the special current 
existing in the SAN pacing—If (funny current)[44,62]. When the SAN 
tissue, or other heart tissue lesions containing HCN channel subtypes, 
is damaged, the HCN channel subtypes are abnormally expressed, 
failing to form If currents and eventually leading to arrhythmias[63]. 
There are four subtypes of HCN channels (HCN1–4). HCN1, HCN2 
and HCN4 are expressed in mammalian hearts, of which HCN4 
is the most important and most widely expressed, accounting for 
about 75% of If in SAN[11,64-65]. HCN4 is the main channel subtype 
of If that maintains the normal pacing current of the heart, and its 
deletion (heterozygous or homozygous) can cause embryonic pacing 
cells to fail or mature[66]. Induction of HCN4 knockout later in life in 
mice can lead to severe bradycardia and conduction system disease, 
suggesting that the gradual loss of HCN4 channel function over time 
may contribute to the development of SSS[67]. Previous studies have 
reported several mutations in the HCN4 gene, and these mutations 
affect the normal expression of HCN4 protein, leading to familial 
SSS[63,68-73]. 
    The voltage-gated sodium channel (Nav) and the INa current 
generated play an important role in the promotion of membrane 
potential depolarization. Among them, the SCN5A gene encoding the 
α-subunit of the Nav1.5 ion channel has been extensively studied, 
because it plays a key role in cardiac excitability. This gene mutation 
is related to a variety of human diseases and often causes severe 
arrhythmias, including atrial fibrillation, premature beats and SND[74]. 
So far, a large number of studies have found that the SCN5A gene 
mutations can trigger human SSS[75-78].
    In addition, the L-type calcium channel current (ICa, L), which 
relies on the formation of L-type calcium ion channels, can be 
transmitted to all regions of the heart and is an extremely important 
inward current during the diastole of SAN cells. In SAN, Cav1.2 and 
Cav1.3-type calcium channels play an important role[11,79]. The gene 
mutations in the calcium channel subunits CACNA1D and CACNA1C 
can cause SSS[12,80].

2.3. MicroRNA and SSS
MicroRNA (miRNA) is an endogenous, short, noncoding RNA that 
mediates gene silencing at the post-transcriptional level[81]. miRNAs 
can cause a variety of diseases, including heart failure, myocardial 
hypertrophy and myocardial infarction[82-83], all of which may 
increase the susceptibility to SSS. For example, miR-17-92 and miR-
106b-25, which are positively regulated by the transcription factor 
Pitx2, can directly target the inhibition of Shox2 and Tbx3 genes, 
which can promote SAN cell differentiation. In animal experiments, 
SND was found in both heart-specific knockout miR-17-92 mice and 
miR-106b-25 heterozygous mice[58]. miRNAs can regulate cardiac ion 
channel gene expression at the post-transcriptional level[84-85]. Recent 
research[79] has found that miRNA-1976 can play an important role in 
SAN ageing by targeting Cav1.2- and Cav1.3-type calcium channels. 
Therefore, miRNA-1976 is a potential noninvasive diagnostic tool 
and therapeutic target for SSS.

3. Biological pacing therapy
3.1. Biopacing based on gene therapy
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differentiation of stem cells into sinus node-like cells, and detecting 
sinus node-like action potential. However, the application of ESCs 
in clinical practice is facing ethical issues; hence, their clinical 
application is limited. iPSCs have pluripotency similar to ESCs, and 
their differentiation potential is similar to ESCs. The method used 
to obtain them is relatively simple and stable. They can be obtained 
from autologous cells without the need for egg cells or embryos. 
This prevents immune rejection and ethical controversies in cell 
transplantation. Spontaneous beating cells are present in iPSC-
derived cardiomyocytes (iPSC-CMs), and diastolic depolarization 
potentials and genes associated with sinus node characteristics can be 
detected[105,106]. Recent studies[107] have found that TBX3 can induce 
pacing function in human-induced pluripotent stem cell-derived 
cardiomyocytes (hiPSC-CMs). However, TBX3 overexpression 
alone is not enough to cause the diastolic depolarization of hiPSC-
CMs, whereas the simultaneous overexpression of TBX3 and HCN2 
can successfully re-encode hiPSC-CMs into pace-like cells and cause 
diastolic depolarization. This provides a new strategy for building 
biological pacemakers.
    MSCs are pluripotent stem cells with promising prospects in the 
field of regenerative medicine. This and other studies have shown 
that overexpressing human genes such as pygo2 with Nkx2.5 to 
promote the differentiation of human umbilical cord MSCs into 
cardiomyocytes is a better method to obtain cardiomyocytes[108-109]. 
Other studies have shown[110] that 5-azacytidine-induced bone marrow 
MSCs can differentiate into pacemaker-like cells that express HCN2 
channel proteins and If currents. In addition to chemical induction, 
microenvironment induction can be adopted. The microenvironment 
induction method is safer and prevents the risk of cytotoxicity and 
mutagenicity. Wang et al[111] found that bone marrow MSCs can 
interact with cardiomyocytes and express connexins Cx40 and Cx43, 
forming gap junctions and open HCN channels, generating pacing 
function, and maintaining stability for a long time. MSCs can be 
obtained in vivo; are easy to isolate, purify, expand and culture, 
without the risk for immune rejection and ethical issues; and easy to 
integrate foreign genes. At present, most studies have used MSCs as 
a carrier, and transfection pacemaker genes or transcription factors 
that regulate the differentiation of SAN obtain sinus node-like cells 
that can express the pacing gene to produce current characteristics. 
MSCs have become the ideal carrier cells for the biological pacing 
treatment of SSS. Yang et al[112] used the HCN4 lentiviral vector to 
transfect MSCs, the pacing-like cells expressed the typical pacing 
protein HCN4, and the whole patch clamp detected a typical pacing 
current If.

CONCLUSION
At present, neither the medical treatment nor the implantation of 
artificial pacemakers can cause physiological or pathological changes 
to the heart. The development of a biological pacing treatment 
strategy brings new hope for the cure of SSS patients; however, 
there are still other techniques of using biological pacing in clinical 
practice. Several issues such as the selection of biological pacing 
target genes, a safe, effective and controllable in vivo gene delivery 
system, and the safety of stem cells have not been completely 
resolved. The replacement of electronic pacemakers by biological 
pacemakers is still the direction of future development. Hence, 
researchers should continue to use various animal models for 
experimental research in the molecular field, explore the pathogenesis 
of new SSS, and improve their understanding of the pathogenesis of 
SSS in order to discover new therapeutic targets. In the near future, 
through continuous research, biological pacemakers can be safely 

and effectively used in the treatment of patients with SSS. To date, 
electronic pacemakers remain the only effective treatment for SSS. 
Before biological pacemaker therapy is successfully applied in the 
clinical setting, older adults should take precautions according to 
their cause of illness. Moreover, prognosis management should be 
implemented in sick people. 
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