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ABSTRACT
The editorial is depicted the role of altered myokines profile in heart 
failure (HF) patients in prediction of HF-related myopathy and unfa-
vorable clinical events. The development and progression of the HF 
is closely associated with the occurrence of myopathy, which leads 
to fatigue, low tolerability to physical exercise and increased risk of 
mortality. Myokines are predominantly produced by skeletal myo-
cytes and regulate energy homeostasis, reparation, and perfusion of 
both skeletal muscles and myocardium. Recent clinical studies have 

shown that the altered profile of these myokines is strongly associated 
with the transformation of single-skeletal muscle fiber myosin heavy 
chain isoforms, impaired muscle energy metabolism and regenera-
tion of skeletal muscles and myocardium. Although the predictive 
value of myokines appears to be optimistic for HF progression, the 
ability of altered myokines’ profile to improve discriminative potency 
of contemporary predictive scores in HF requires to be wide investi-
gated in large clinical trials.
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INTRODUCTION
Heart failure (HF) remains a global medical and social problem due 
to its high economic burden to the health-care system, decreased 
quality of life of the patients and poor long-term prognosis[1,2]. 
Moreover, HF is a leading cause of CV mortality and urgent 
hospitalization among adults and the elderly having established 
CV disease[3]. Although the total number of new cases of the HF 
with reduced ejection fraction (HFrEF) exhibits stable rate in the 
last decade, the prevalence of HF with preserved ejection fraction 
(HFpEF) continues to remarkably growth and currently higher than 
that of HFrEF[4]. Despite the difference in the presence of CV risk 
factors and comorbidities among patients having HFrEF and HFpEF, 
both phenotypes of the disease have similar outcomes[5,6].
    Fatigue, low tolerability to physical exercise, declined skeletal 
muscle mass, muscle weakness are most common clinical features 
of HF regardless of its phenotype and frequently associated with 
the development of the HF-related myopathy, sarcopenia and even 
cardiac cachexia[7,8]. Indeed, the physical exercise intolerance as one 
of most disabling symptoms of specific skeletal muscle myopathy 
has been defined in the HFrEF and HFpEF[9]. The HF-related skeletal 
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Figure 1 Principal pathophysiological mechanisms of the development 
of HF-related myopathy. Abbreviations: LVEF, left ventricular ejection 
fraction; IL, interleukin; GDF, growth differential factor; TNF, tumor 
necrosis factor; RAAS, renin-angiotensin-aldosterone system; NO, nitric 
oxide; NPs, natriuretic peptides; VEGF, vascular endothelial growth factor.

myopathy characterized by decreased the number of muscle fibers, 
declined muscle strength, impaired metabolism of oxidative muscle 
fiber types due to mitochondrial dysfunction, ongoing inflammation 
and oxidative stress, and altered regeneration after acute muscle 
injury[10,11].
    Myokines are predominantly produced by skeletal myocytes 
and regulate energy homeostasis, reparation, and perfusion of both 
skeletal muscles and myocardium[12]. In physiological condition 
myokines ensure the molecular adaptations of skeletal muscles 
to physical exercise and hemodynamic supply acting as regulator 
of exercise intolerance[13]. Because myokines are also secreted by 
adipocytes the altered myokine profile is responsible for metabolic 
or hormonal derangements in skeletal muscles and adipose tissue 
and probably it could be a target for the therapy of HF. Therefore, 
some of them, such as irisin, myostatin, interleukin-6 (IL-6), were 
found to be powerful predictors for cardiac remodeling and mortality 
in myocardial infarction and HF[13-16]. The aim of the editorial 
is to summarize knowledge among altered myokines profile in 
patients having HF and elucidate its role in prediction of HF-related 
myopathy and unfavorable clinical events.

MYOPATHY IN HEART FAILURE
The progression of both HFrEF and HFpEF is associated with a 
transformation of skeletal muscle fiber composition and metabolism 
by uncertain molecular mechanisms [17].  These underlying 
abnormalities effect skeletal muscle energy homeostasis, structure 
and function through direct impairment of mitochondrial electron 
transport chain activity, shifted metabolic substrate utilization, 
increased formation of reactive oxygen species, aberrant 
mitochondrial dynamics, and altered ion homeostasis, microvascular 
inflammation and endothelial dysfunction[18]. Yet, catabolic condition 
due to neurohumoral and inflammatory activation aggravates 
the effect of the metabolic alteration[19]. In addition, diaphragm 
dysfunction and inspiratory muscle weakness also contribute to 
the development of exercise intolerance in HF patients[20]. Finally, 
hypoxia, deep metabolic alteration and ischemia injury of muscles 
lead to loss of myocytes due to necrosis and apoptosis, altered 
myoblast differentiation, impaired reparation and weak perfusion[21]. 
The result of these processes are certain perturbation of specific 
hormonal and myokines signal pathways, which includes an 
imbalance in the production of aldosterone, adipocytokines, tumor 
necrosis factor (TNF)-alpha, myostatin, myonectin, decorin, IL-6, 
IL-8, IL-15, and irisin[22]. The altered profile of these myokines is 
associated with the transformation of single-skeletal muscle fiber 
myosin heavy chain isoforms, impaired muscle energy metabolism 
and regeneration, which lead to the occurrence of vicious circle and 
progression of HF-related myopathy (Figure 1).
    Finally, muscle weakness, skeletal myopathy, muscle atrophy 
and cachexia are the attributive factors for HF progression and 
they are closely associated with an increase in CV mortality, HF 
hospitalization, and a decrease in the quality of life and well-
being[23,24]. 

MYOKINES IN HF-RELATED MYOPATHY
The skeletal muscles enable to release a wide range of the biological 
active molecules with variable potencies called myokines, the prolife 
of which was found to be altered in HF patients[25]. Although HF-
related myopathy has been considered as secondary muscle injury 
that was associated with low capillary perfusion[26], myokines ensure 
adaptive metabolic auto regulation of structure and function of both 

Figure 2 The effects of the myokines in HF. Abbreviations: HFrEF, heart 
failure with reduced election fraction; HFpEF, heart failure with preserved 
ejection fraction; FFA, free fatty acid; SPARK, secreted protein, acidic and 
rich in cysteine; IL, interleukin; BDNF, brain-derived neurotrophic factor.

skeletal and respiratory muscles, as well as myocardium[27].
    There is evidence for the fact that the wide spectrum of myokines 
provides controversial actions on skeletal muscle cells and mediates 
pleiotropic effects. Most of myokines are controlled by muscle 
contractility function, myogenesis, muscle hypertrophy, reparation 
and consequently closely regulates exercise tolerance via intracellular 
signal pathways including Janus 1 and 2 kinases / 3 and 5 signal 
transducer and activator of transcription proteins / nuclear factor 
Kappa B, PI3 kinase / MAP kinase pathways[28]. It is interesting that 
some potentially pro-inflammatory myokines, such as IL-15 and 
IL-8, simultaneously provide angiopoetic effects and support pro-
apoptotic impact on myoblasts. It has been found interrelationship 
between NO-mediated cellular signaling and production of the 
myokines in skeletal muscle cells[28]. However, hyperemia in skeletal 
muscle over physical exercise was strong associated with myokines 
release. The role of myokines in physiological condition and HF is 
reported in Table.
    The occurrence of myopathy in HF accompanies by cross over 
changes in the spectrum of the myokines. Indeed, there were found 



Berezin AE et al . Myokines in heart failure

956

Table 1 The role of some myokines in physiological condition and in HF.

Myokine Affiliation
Biological action

References
Physiological condition HF

Down-regulated in HF

Decorin Proteoglycan ↓ accumulation of ECM, ↑ cell differentiation, ↑ 
proliferation, and ↓ apoptosis ↓ cardiac hypertrophy, ↑ cardiac fibrosis [29,30]

Irisin Muscle tissue-secreted 
peptide FNDC5

↑ expenditure, ↑ oxidative metabolism, ↑ myoblast 
differentiation, ↑ glucose uptake,

↓ tolerance to physical exercise, ↑ skeletal 
muscle hypotrophy [31,32]

Myonectin CTRP15 ↑ oxidation of free fatty acid, ↑ oxidative metabolism, 
↑ myoblast differentiation, ↑ glucose uptake ↑ skeletal muscle hypotrophy [33,34]

BDNF Neurotrophin family ↑  myoblast  prol i ferat ion,  ↑  neurogenesis ,  ↑ 
angiogenesis, ↑ vascular reparation ↑ tolerance to physical exercise [35,36]

IL-15
pleiotropic cytokine with 
structural similarity with 
IL-2

Anabolic effect, ↓ oxidative stress
↑ tolerance to physical exercise, ↑ skeletal 
muscle mass, ↓ WAT, ↓ apoptosis of 
cardiac myocytes and myoblasts

[37]

Up-regulated in HF

Myostatin TGF-β superfamily

↑ skeletal muscle fiber-type switches, ↓ fast myosin 
heavy-chain expression, ↓ differentiation of myoblasts, 
↑ ubiquitin-proteasomal activity in myocytes and 
ILGF-PKB pathway

↑ skeletal muscle hypotrophy, ↑IR, ↑ 
autophagy, ↑ muscle weakness, ↓ exercise 
tolerance

[38,39]

IL-8 cysteine-X-cysteine family 
of chemokines ↓ glucose disposal, ↑ IR ↓ skeletal muscle energy metabolism [40,41]

Osteonectin SPARC protein Potential mediator of collagen deposition and 
extracellular matrix remodeling

Predictor of poor HF outcomes, ↑ cardiac 
contractility and reparation at early stage, 
↓ cardiac myocytes survival and vascular 
integrity at late stage

[42]

Abbreviations: TGF-β, transforming growth factor-beta; IR, insulin resistance; ILGF-PKB, insulin-like growth factor-protein kinase B; WAT, white adipose 
tissue; ECM, extracellular matrix; SPARC, Secreted protein acidic and rich in cysteine.

elevated serum concentrations of myostatin and IL-8, whereas irisin 
and myonectin demonstrated significant decrease in their circulating 
levels. Finally, myokines influence not just skeletal muscles, but also 
myocardium and adipose tissue and ensure their autocrine metabolic 
regulation of energy homeostasis, hypertrophy, reparation, and as 
well as adaptation of skeletal muscles to physical exercise.

PREDICTIVE VALUE OF MYOKINES IN HF
Several myokines were able to predict adverse clinical outcomes 
in HF. Indeed, elevated serum irisin levels were independently 
associated with increased mortality and a risk of cardiac cachexia 
in acute and chronic HF patients respectively[43,44]. Myostatin was 
found an independent predictor of mortality in HF patients and re-
hospitalization due to HF progression[45]. Circulating levels of BDNF 
were inversely associated with adverse outcomes in acute and chronic 
HF patients[36,46]. In addition, SPARC proteins have demonstrated an 
independent association with poor long-term HF-related outcomes 
including death, and a risk for recurrent hospitalization due to[47]. 
However, the exact molecular pathways, which link myokines 
with the HF outcomes remains uncertain and requires being clear 
elucidated in the future.
Conclusion: Myokines being autocrine / paracrine regulators of 
metabolic homeostasis of myocardium and skeletal muscles are 
involved in the pathogenesis of HF. Altered myokines’ profile has 
been found in patients with HFrEF and HFpEF and was associated 
with poor clinical outcomes, adverse cardiac remodeling, HF-related 
myopathy and cardiac cachexia. Predictive value of myokines 
continues to investigate because preliminary findings appear to be 
optimistic for creation of predictive models. Large clinical trials are 
required to thoroughly elucidate whether altered myokines’ profile is 
able to improve discriminative potency of contemporary predictive 
scores. 
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