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ABSTRACT
Heart failure with preserved ejection fraction (HFpEF) has high 
prevalence involving up to 55% of all patients with congestive 
heart failure. Cardiac imaging modalities play a central role in the 
evaluation of systolic and diastolic function, which is crucial in the 
diagnosis and management of HFpEF. Cardiovascular magnetic 
resonance (CMR) imaging has emerged over the last years and 
currently represents the gold standard in the quantification of 
systolic function. Its role in the characterization of diastolic 
function has not equally been established. Historically available 
techniques for diastolic function quantification such as myocardial 
tagging remain relatively time consuming, thereby limiting their 
clinical applicability. Recent advances in deformation quantification 
based on myocardial feature tracking from routine clinical standard 
sequences allow for easy and quick quantification of ventricular 
and atrial physiology. This report aims to review available CMR 
modalities for the evaluation of diastolic dysfunction including the 
latest advancements in the field with an emphasis on their potential 
future role and clinical implications.
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INTRODUCTION
With the ageing population and the concomitant change of the 
compound of risk factors heart failure with preserved ejection 
fraction (HFpEF) has increased in prevalence and has developed 
into a major health problem in the western world[1,2]. Today, HFpEF 
accounts for up to 55% of all patients with congestive heart failure[3,4]. 
Studies investigating patients hospitalized for heart failure reasons 
documented that the prognosis associated with HFpEF is similar 
to that associated with heart failure with reduced ejection fraction 
with only a minimal mortality difference between both groups[2-5]. 
According to current consensus statements[6], the diagnosis of HFpEF 
requires the presence of three obligatory conditions: (1) presence of 
signs or symptoms of congestive heart failure; (2) presence of normal 
or mildly abnormal left ventricular (LV) systolic function; and (3) 
evidence of diastolic LV dysfunction. Cardiac imaging modalities 
therefore have a central role in the diagnosis of HFpEF with a clear 
need for easy and comprehensive non-invasive imaging techniques.
    An impaired diastolic ventricular filling can be caused by three 
mechanical factors: a decreased relaxation capability of myocytes, 
an increased stiffness of the ventricular wall, or an impaired 
atria-ventricular conduction of blood flow. Current diagnostic 
guidelines are based on surrogates of these mechanisms, captured 
by invasive catheterized blood pressure sensors, blood tests or 
echocardiography[6]. A direct assessment of tissue stiffness is feasible 
with a proper analysis of the relationship between pressure and 
imaging data[7], and recent advances in computational techniques 
have enabled to decouple the combined effects of stiffness and 
decaying active tension from CMR[8], see figure 1. Nevertheless, 
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to quantify transmitral flow profiles. Similarly to echocardiographic 
pulsed-wave Doppler examination, the analysis results in the 
quantification of early (E) and atrial (A) peak filling velocities. The 
E/A ratio and the deceleration time of the E peak filling velocity can 
be used to classify different grades (I-III) of diastolic dysfunction[6,9]. 
Increased E/A ratio and decreased deceleration time is associated 
with worsening of diastolic dysfunction and presents a strong 
prognostic marker for major cardiac events and mortality[20]. Although 
acceptable correlation was found between Doppler and phase-
contrast MR studies, the cutoff values cannot be used interchangeably 
for both techniques. Due to the lower temporal resolution of phase-
contrast MR, velocities tend to be underestimated when compared to 
Doppler echocardiography[21]. Recently, real-time flow MRI methods 
with higher temporal resolution have been developed but need to be 
validated with regard to mitral inflow[22]. 
    The pulmonary venous inflow pattern also affects LV diastolic 
function. Through-plane flow, typically with an imaging plane 
positioned 0.5 cm or further into the upper pulmonary vein[9], can 
be utilized to evaluate the pulmonary venous flow by looking at 
characteristic wave forms: S, D and A; where S (systole) depends on 
LA relaxation and LV systolic function, D (early diastole) depends on 
LV relaxation and myocardial stiffness and A (end-diastole) on LA 
contractile function and myocardial stiffness.

Left atrial size
LV diastolic dysfunction directly influences the left atrium (LA) and 
causes LA enlargement. LA enlargement can be used as diagnostic 
parameter both in diastolic dysfunction and overt HFpEF. It 
further represents a risk factor for major cardiac events and leads 
to a poorer prognosis in patients with diastolic dysfunction and 
HFpEF[23]. A reliable assessment of LA volume is therefore crucial 
in clinical routine. CMR constitutes not only a valid alternative to 
echocardiography but has become the gold standard in the evaluation 
of atrial volumes[6]. Especially, if small changes in LA volumes are 
expected (e.g. when evaluating progression of disease or follow-
up of therapeutic interventions is required) CMR represents the 
method of choice. LA volume can be assessed by Simpson’s 
volumetric method based on disc summation and therefore requires 
the acquisition and analysis of short-axis slices covering the entire 
LA. In clinical routine, the biplane area length method offers a 
compromise between accuracy and analytical speed. The LA area (A) 
and anterior-posterior length (L) are measured in 2- and 4- chamber 
views. LA volume is calculated with the following equation: LA 
volume (mL)=0.85*A2C*A4C/L, where A2C and A4C are the LA areas 
on 2-chamber and 4-chamber views and L is the shorter length of the 
LA from either the 2-chamber or the 4-chamber views.

Left ventricular filling curve
The LV filling curve enables accurate assessment of the time varying 
LV volume change during the cardiac cycle and provides evaluation 
of peak filling rates, time to peak filling rates and atrial contribution 
to LV filling[24,25]. Diastolic dysfunction is associated with decreased 
peak filling rates and increased time to peak filling rates. Typically 
a short-axis stack of cine SSFP images covering the LV is acquired. 
The technique requires subsequent tracing of the endocardium 
of typically 250-350 images. Compared with conventional 
gradient-echo sequences, the image quality of LV short axis views 
significantly improved with the development of SSFP techniques 
resulting in a better definition of endocardial borders[26]. However, 
since manual correction remains necessary in the large majority of 
cases the method remains time-consuming and cumbersome from 

Figure 1 Computational analysis of CMR for the assessment of diastolic 
biomarkers, where mathematical models of geometry and mechanical 
function are used to interpret the data of deformation and pressure. 
This figure illustrates the personalization of a mechanical computational 
mesh of the left ventricle to a stack of short axis slices using a previously 
described automatic method[57].

these more accurate methodologies rely on invasive pressure 
recordings.
    Currently, echocardiography represents the imaging modality 
of choice to evaluate and to grade diastolic function including a 
wide range of corresponding technical approaches[6,9], but has some 
limitations regarding systolic function assessment[10,11]. On the 
other hand, cardiovascular magnetic resonance (CMR) imaging has 
developed into the gold standard for volumetric quantification of 
systolic function[10,12]. In contrast, the role of CMR in the evaluation 
of diastolic dysfunction is less-well established in clinical routine. 
Several innovative CMR imaging techniques including tissue phase- 
contrast[13], elastography[14], MR spectroscopy[15], displacement 
encoding with stimulated echoes (DENSE)[16] and strain encoded 
imaging (SENC)[17] have been introduced with a potential use in the 
diagnosis of diastolic dysfunction.. However, practical obstacles, 
e.g. the need for additional sequence acquisition, time-consuming 
post-processing and image analysis limit their clinical applicability 
at the present time. Recently, novel techniques have been introduced 
that may allow for a reliable and less time-consuming evaluation 
of diastolic function based on clinically available standard cine 
sequences. This report aims to review the potential of diastolic 
function assessment with CMR with an emphasis on novel CMR 
techniques that enable an easy and quick evaluation of diastolic 
function from routinely available standard steady-state free-
precession (SSFP) cine CMR images.

CONVENTIONAL CMR IMAGING TECH-
NIQUES
Mitral inflow and pulmonary venous flow
Phase-contrast MR or velocity-encoded flow quantification can be 
employed at any arbitrary location within the chest and therefore 
has the ability to evaluate mitral inflow and pulmonary venous flow 
patterns. The technique is based on moving spins that acquire a 
shift in their phase of rotation while moving along a magnetic field 
gradient. Assuming that linear magnetic field gradients are applied, 
this phase shift is proportional to the velocity of moving spins[18,19]. 
Typically, retrospective ECG-gating is used to cover the entire heart 
cycle. Data acquisition can be performed with either breath-hold or 
free-breathing techniques. 
    For the evaluation of mitral inflow, the acquisition plane is 
typically placed perpendicular (through-plane acquisition) to the flow 
direction at the position of the mitral valve at end-systole. A circular 
region of interest is placed at the center of the mitral valve orifice 
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a clinical perspective. Clearly, the performance of fully automated 
segmentation algorithms needs optimization.

Myocardial tagging
With CMR tagging a radiofrequency pulse is applied to label the 
myocardium by grid lines. These lines can be tracked throughout 
the cardiac cycle allowing the calculation of myocardial strain in 
radial, longitudinal, and circumferential direction. However, this 
technique has not yet found widespread use in clinical practice, as 
several challenges regarding technical acquisition and analysis still 
need to be overcome. A major limitation of myocardial tagging 
for the assessment of diastolic function is the fading of grid lines 
over the cardiac cycle which leads to difficulties in the assessment 
of late diastolic deformation. In a large study population with left 
ventricular hypertrophy, early diastolic strain rate could be measured 
in 80% of segments while late diastolic strain rate induced by atrial 
contraction could be assessed in only 32% of patients[27]. Further 
limitations of myocardial tagging are the requirement to acquire 
additional sequences and complex analysis both leading to increased 
examination and post processing time. Furthermore, long breath-hold 
times limit the clinical application particularly in patients with heart 
failure. 

NOVEL CMR IMAGING TECHNIQUES
Myocardial feature tracking
CMR feature tracking (CMR-FT)-a technique analogous to 
echocardiographic speckle tracking-allows the quantification of 
myocardial deformation directly from clinical, standard SSFP 
cine CMR images, without the need to acquire additional tagged 
images[28,29]. A moderate to good agreement of CMR-FT with 
myocardial tagging and echocardiographic speckle tracking has been 
demonstrated[30,31]. CMR-FT is based on offline software analysis 
and applicable to both 1.5 T and 3 T magnetic field strengths[32]. 
Whilst its values in patients with systolic dysfunction has been 
recently described[33] there is still a need to investigate its potential 
role in diastolic function assessment. The software tracks features, 

such as the apparent cavity boundary or tissue patterns, related to 
a predefined contour. The movement of features from frame-to-
frame is used to quantify myocardial deformation in the longitudinal, 
circumferential and radial directions, as well as strain rates (Figure 2), 
velocity, displacement, twist and untwist (Figure 3)[34,35]. Untwisting 
contributes to LV diastolic relaxation and early diastolic filling[36,37]. 
In contrast to flow velocity and time-volume relations, LV strain rate 
and untwist rate represent a direct correlate of myocardial diastolic 
function as measured with speckle tracking echocardiography[38] and 
myocardial tagging[27]. Future studies need to elucidate whether or not 
CMR-FT may deliver similar information in patients with diastolic 
dysfunction.
    Since LA function represents an important parameter in LV 
diastolic dysfunction pathophysiology, recent studies especially 
focused on LA dysfunction in HFpEF. An increase in LA afterload 
caused by elevated LV filling pressures secondary to severe LV 
diastolic dysfunction has long been considered the main underlying 
mechanism of LA dysfunction[39,40]. However, studies proposed that 
the degree of elevated LV filling pressures may not fully explain 
LA failure and that - similar to the LV - LA myocardial fibrosis 
may contribute to LA dysfunction[41,42]. In contrast to myocardial 
tagging, speckle-tracking echocardiography is able to evaluate LA 
longitudinal strain and strain rates during late ventricular diastole[43]. 
LA profiles from CMR-FT may deliver similar information and 
could be used to calculate longitudinal positive strain (corresponding 
to LA conduit function) and three strain rate (SR) parameters (peak 
positive SR, early negative SR and late negative SR), corresponding 
respectively to commencement of ventricular systole, commencement 
of ventricular diastole and atrial contraction. Echocardiographic 
speckle tracking demonstrated LA longitudinal peak strain and late 
negative strain rates to be reduced in HFpEF compared to patients 
with asymptomatic diastolic dysfunction[44]. 
    The role of CMR-FT in the evaluation of LV longitudinal strain, 
radial strain, circumferential deformation, twist and untwist and LA 
strain and strain rates in patients with HFpEF and asymptomatic 
diastolic dysfunction remains to be investigated.

Figure 2  CMR myocardial feature tracking.  Averaged left ventricular radial strain and strain rate (A) and circumferential strain and strain rate (B) in mid-
ventricular short-axis view.
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CMR Fractional area change
LV fractional area change (FAC) analysis represents a method to 
determine LV relaxation indices based on the degree of endocardial 
area expansion during the first 30% of diastole with minimal efforts 
from a single mid-ventricular short-axis cine SSFP slice[45]. Initial 
quantitative LV fractional area change results demonstrated good 
correlation with echocardiographic parameters for the evaluation of 
LV diastolic dysfunction. However, studies using myocardial tagging 
showed that the analysis of different slices may yield different results 
in basal, mid-ventricular and apical orientations[46]. The proposed 
method is therefore limited since it only assesses regional relaxation 
indices. Therefore FAC should next be explored in multiple cardiac 
views, including short- and long-axis views to assess global diastolic 
relaxation parameters. Furthermore, these relaxation indices should 
be related to clinical parameters and serum markers of diastolic 
dysfunction such as cardiopulmonary exercise testing or natriuretic 
peptide levels to better understand their clinical relevance. 

Left atrial contractile function 
The increasing relevance of the left atrial function in the 
pathophysiology of diastolic dysfunction led to CMR studies 
focusing on the role of LA contractile function. In healthy subjects 
without diastolic dysfunction passive emptying of the LA during 
LV diastole contributes up to 75-80% of LV filling, whilst LA 
contraction normally contributes to about 25%. On the one hand, LA 
contraction contribution to LV filling increases in mildly impaired 
relaxation up to 38%[47,48], whereas on the other hand, markedly 
increased LV filling pressure might cause pseudo-normalization or 
even decrease of LA contraction with decreased contribution to LV 
filling to less than 20 %[23,39]. The evaluation of LA function typically 
comprises measurements of LA maximum volumes, LA volumes 
prior to atrial contraction and LA minimum volumes. Volumes can 
be evaluated using Simpson’s disc summation method or, more 
easily, with the biplane area length method from standard 2-chamber 
view and 4-chamber view SSFP cine CMR images. Corresponding 

volumes allow the estimation of left atrial contractile function due 
to the calculation of total, passive and contractile LA emptying 
functions[24,49].  Recent studies highlight the relevance of increased LA 
minimum volumes rather than LA maximum volumes as a correlate 
of increased left ventricular end-diastolic pressures in patients with 
diastolic dysfunction[50,51]. Decreased LA contractile emptying 
function quantified by CMR has been shown to be a better predictor 
of adverse cardiac events and death compared to LA maximum and 
minimum volumes in patients with suspected diastolic dysfunction 
with a history of chronic hypertension[49].  The relation of quantitative 
LA contractile function with clinical markers and serum markers of 
diastolic dysfunction remains to be investigated. 

4D velocity mapping
Acquisition of blood flow velocity from 4D velocity mapping 
enables the computation of pressure gradients[52,53], and even the 
analysis of the relative contribution of the different components of 
pressure to blood flow dynamics[54]. Recent studies demonstrated that 
intraventricular pressure gradients at late ejection predict an impaired 
relaxation[55]. Even more, imaging methods for the assessment of 
blood pressure could overcome the need for invasive catheter pressure 
recordings for the estimation of myocardial stiffness and relaxation[56].

CONCLUSION
CMR imaging gains an incremental role in the evaluation of diastolic 
dysfunction. Whilst novel relaxation parameters from CMR-FT 
may offer more accurate assessment of diastolic function, relaxation 
indices from CMR fractional area change and a reliable evaluation 
of left atrial contractile function represent interesting techniques to 
quantify the amount of diastolic dysfunction present in an individual 
patient. The presented novel CMR techniques promise an evaluation 
of diastolic function from clinically standard SSFP cine CMR 
images and require only minimal post-processing efforts underlining 
their applicability particularly for clinical routine use. 4D velocity 
mapping represents a promising approach to assess intraventricular 

Figure 3 Twist assessed by CMR myocardial feature tracking in a healthy volunteer (left) and a patient with diastolic dysfunction (right). Global left 
ventricular twist corresponds to the difference between apical counterclockwise rotation and clockwise basal rotation. Please note the decreased peak 
untwist rate in the patient with diastolic dysfunction.
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pressure gradients and might help to characterize impaired relaxation. 
The role of these techniques in the examination of diastolic 
dysfunction in HFpEF and patients with asymptomatic diastolic 
dysfunction however remains to be defined in future prospective 
clinical investigations. 
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SR: Strain rate
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