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ABSTRACT

The natural G—A substitutions in the HBV pre-Core gene with
HBeAg negative phenotype is implicated in the chronic hepatitis and
disease severity. Liver ‘apolipoprotein B mRNA-editing enzyme-
catalytic polypeptide-like (APOBEC)’ protein mediated G—A
"mononucleotide" hypermutations have been reported in HBV pre-
Core gene that prefer 5’GGGG tetrad substrate, as an antiviral-innate
immune mechanism. The pre-Core nucleotide sequence analysis of
twelve HBe negative viral isolates from chronic hepatitis B patients,
showed classical G1896A mutations in 3 samples. Of these, one viral
sequence showed an additional G1897A substitution, representing a
‘dinucleotide-pattern” hypermutation resulting in pre-Core stop codon
(UGG—UA4) in the 5’GGGGQG tetrad. In another sample, a second
G1899A substitution was also identified in the same tetrad stretch, but
in the next codon (UGGGGC—UAGGAC). These results therefore,
suggest that the pre-C 5’GGGG stretch appears as a favorable spot
for ‘dinucleotide-pattern’ G—A hypermutation that could have been
introduced by APOBEC enzyme(s) in HBe negative HBV variants.
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Hepatitis B virus (HBV) is one of the most widespread viral infec-
tions, estimated to affect about 500 million individuals with an
annual 1.2 million death, worldwide"”. Chronic hepatitis B is a
serious public health issue because it causes broad spectrum of liver
diseases like, fulminant liver failure, cirrhosis and hepatocellular
carcinoma (HCC)®. HBV has a partially double-stranded, circular
DNA genome (~3.2 kb) containing four overlapping open reading
frames (Surface, S; Polymerase/Reverse-transcriptase, pol/RT; Core/
pre-Core, C/pre-C and X) that replicates via a unique RNA inter-
mediate step'™. A specific pattern of mutation is observed in human
retroviruses, like HIV and HBV, the pararetrovirus with extensive,
monotonous guanosine (G)—adenosine (A) base substitutions®.
Such hypermutations often result in premature stops when trypto-
phan (UGG) changes to a termination codon (UAG, UAA or UGA).
Two mechanisms are therefore, proposed to explain this hypermuta-
tion. The first is the viral pol/RT enzyme with error-prone reverse-
transcription that misincorporates adenosines for guanosines and
generates genetically related viral quasispecies in a host'”. In earlier
studies, HBV genomes with G—A hypermutation have been de-
tected at low frequency in infected human serum”’. The second ex-
planation is the human APOBEC-family proteins that play a crucial
anti-viral role in the host innate-immune system™'”. The host liver-
specific APOBEC proteins, if incorporated into viral nucleocapsids,
deaminate cytidine (C) bases in the nascent viral (-)strand DNA
during reverse-transcription. The deaminated cytidine then, base-
pairs to thymidine (T) and consequently, guanosines are replaced by
adenosines during synthesis of viral complementary (+)strand DNA.
Liver APOBEC proteins-induced G—A hypermutations in HBV
genome has been already reported”""”. Moreover, both interferons
(IFNs), IFN-a and IFN-y are shown to elevate levels of APOBEC
mRNA in cultured HepG2 cell that promote hypermutations in HBV
DNA™', Further, the exacerbations of hepatitis B reflected by an
increase in the number of mutant viral genomes were associated not
only with a fall in the serum viremia but also with HBeAg clearance
and subsequently, anti-HBe seroconverson'™'¥. The seronegativity
of HBeAg often results from a G—A substitution at first or second
position in the 5-GGGG tetrad (nts. 1896-1899) stretch in the pre-C
coding region (Figure 1). It is also postulated that this pre-C 5’
-GGGG stretch is the preferred substrate for the APOBEC enzymat-
ic editing. Importantly, such substitution(s) in this 5'-GGGG tetrad
should result in the multiple stop codons in pre-C coding sequences.
In this report, I therefore, looked into the occurrence of G—A hyper-
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Figure 1 Schematic representation of HBV pre-Core (pre-C) gene. Location
of the 5’GGGG tetrad stretch is shown.

mutations in the pre-C coding sequences in HBeAg negative HBV
isolates.

HBYV sequences from twelve north-Indian HBeAg seronegative
hepatitis B patients with clinically diagnosed chronic liver disease
were selected for this study. Every source host fulfilled the following
inclusion criteria: HBeAg seronegativity, persistence of HBsAg and
anti-HBe seropositivity for at least 12 months, HBV DNA seroposi-
tivity, liver alanine transaminase >1.5X upper limit of normal, and
seronegativity for HCV and HDV markers. The commercial ELISA
based-serological tests were performed on at least two occasions for
all patients: HBsAg and HBeAg (Organon Teknika, Broxtel, The
Netherlands), total anti-HDV (Abbot Laboratories, IL, USA) and
anti-HCV (Third generation ELISA, UBI 4.0, NY, USA). HBV DNA
was extracted from the patient’s serum, using the standard phenol-
chloroform method"”. Briefly, viral DNA was isolated from 100 mL
serum using sera lysis buffer (20 mM Tris, pH 7.5; 10 mM EDTA;
150 mM NaCl), 1% SDS, and proteinase K (1 mg/mL) at 37 C for
3 h, followed by extraction with Tris-saturated phenol (pH 7.9) and
chloroform-isoamyl alcohol and finally DNA precipitation with 3 M
NaOAc (pH 5.2) and absolute ethanol. The DNA pellets were air-
dried in sterile condition, dissolved in 30 mL of 1XTE buffer (10
mM Tris and 1 mM EDTA) and stored at -20°C for further use. Two
microgram of viral DNA was subjected to HBV-specific diagnostic
polymerase chain reaction (PCR) (GeneAmp PCR System 2400,
Perkin Elmer, USA), as described elsewhere®™. Serum from a chronic
hepatitis B patient (positive for HBeAg and HBV DNA) was used
as the positive control while that from a healthy subject (negative
for HBV, HCV and HDV) and molecular-grade sterile water served
as negative controls. The HBV positive samples were further sub-
jected to a second PCR step to amplify the pre-C/C coding region,
using pre-C/C specific primer sets: forward (nts. 1779-1798), 5’
GGGTGTAGGCATAAATTGGT3’ and reverse (nts. 2376-2400),
5’"GTGCGAGGCGAGGGAGTTCTTCTTC3’. A 2.5 uL of DNA
template and 10 pmol of each primer were used in a 50 uL PCR-
reaction volume. Of the 35 thermal cycles, each cycle comprised of
94°C- 1 min, 55°C- 1.5 min and 72°C- 2 min. Proper positive as well
as negative controls (described, above) were also included. Ten micro
liter of each PCR product was subjected to electrophoresis on a 1.5%
agarose gel, stained with ethedium bromide and detected as a 603 bp
band under UV light. For direct automated DNA sequencing, ampli-
cons were column purified (Qiagen PCR Purification Kit, Germany).
In a 10 uL reaction volume, each of forward and reverse sequencing
reactions were set with 1 pL (5 pmol) of each primer and 5 pL (~250
ng) purified template plus 4 pL sequencing mix (Perkin Elmer, CA,
USA). The PCR was carried out for 30 thermal cycles, conditioned
for 96°C- 30 s, 55°C- 30 sec and 60°C- 4 min per cycle. The purified
amplicons were ethanol-precipitated and sequenced (ABI Prism-377
DNA Sequencing System, Perkin Elmer, CA, USA). The nucleotide
sequences of HBe negative HBV variants were analyzed with that of
a wild type HBV, using the online software MULTALIN version 5.4.1
(http://multalin.toulouse.inra.fr/multalin/cgi-bin/multalin.pl).

Viral DNA sequence analysis revealed multiple mutations in the
pre-C region of all the twelve HBV DNA samples. Three sequences
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(pcTetG-2, pcTetG-4, and pcTetG-5) showed a classical G1896A sub-
stitution in the 5’GGGG tetrad, converting ‘tryptophan’ to ‘stop’ (TGG
—TAG) at codon 28 (Figure 2A). The nine HBe negative viruses had
G—A ‘mononucleotide’ mutations, converting the respective codons
into pre-mature ‘stops’ in the flanking regions of 5°GGGG tetrad
(data not shown). The viral isolate, pcTetG-4 had a second G1899A
‘mononucleotide’ mutation at the fourth position in the 5°GGGG tet-
rad, in addition to G1896A change. Interestingly, the viral pcTetG-5
variant was found to have a tandem G1897A substitution at second
position, following G1996A in the 5’GGGG stretch. This represented
a novel ‘dinucleotide’ G—A hypermutation in pre-C codon 28 (TGG
—TAA), resulting into a presumably forced, ‘double-stop’ mutation
(Figure 2B). We however, could not find any significant clinico-
pathological correlate of this ‘double-stop’ mutation in the respective
patient compared to those harboring a ‘single-stop’ mutation in the
tetrad. Further, we did not observe a G1998A change, alone or in
combination with G1896A mutation in any of the viral sequences, in-
cluded in this report. After its first discovery in HIV?, the liver APO-
BEC-mediated G—A hypermutation has been subsequently reported
in other retroviruses"” as well as HBV!">'"**"*3 The current finding
of G—A double-substitution (TGG—TAA) in HBV pre-C gene is
in agreement with the ‘dinucleotide-pattern’ substrates preferred by
human APOBEC family of enzymes!"®. However, unlike HIV, HBV
does not show a consistent ‘dinucleotide context’, is also supported
by other HBe negative pre-C sequences. Further, compared to HIV,
such hypermutation in HBV could be extensively induced by six
(A3A-C and F-H) of the seven enzymes in the APOBEC family™.

5'GGGG
A tetrad
pcTetG-Wt  CTTGGGTGGCTTTGGGGCATGGAC
pcTetG-2  CTTGGGTGGCTTTAGGGCATGGAC
pcTetG-5 CTTGGGTGGCTTTAAGGCATGGAC
pcTetG-4  CTTGGGTGGCTTTAGGACATGGAC
Consensus CTTGGGTGGCTTTa g G gCATGGAC
codon 24 25 26 27 28 29 30 31
2228
B EREE
TRP GGC -wt
TAG|GGC -2
STOP |TAA|GGC -5
TAG|GAC -4
Cod28

Figure 2 The HBV pre-C hypermutation region sequence analysis. A: Multi
alignment of the three pre-C sequences (pC-2, -5, -4) with wild type (wt),
showing G—A hyper mutation in the 5GGGG tetrad; B: ‘Dinucleotide-
pattern’ tryptophan (Trp) to Stop codon mutations in the 5GGGG stretch
resulting into HBe negative phenotype.

The above results suggest that the pre-C 5’GGGG stretch appears
as a favorable spot for G—A hypermutations in HBV genome. It
could be therefore, assumed that the detected ‘dinucleotide-pattern’
(GG—AA) hypermutations could have been introduced by APOBEC
family enzymes that resulted into HBeAg negative phenotype. Nev-
ertheless, molecular studies like, in vitro expression levels of APO-
BEC as well as its genetic polymorphism in study-patients are further
required.
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