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ABSTRACT
Sensory input is crucial for the initiation and modulation of the swallow 
response. Patients with neurogenic oropharyngeal dysphagia present 
severe impairments in oropharyngeal sensitivity associated with 
impaired motor responses. Several strategies have been used with the 
aim to modulate the swallow response by modifying the sensorial 
properties of the bolus (either chemically or physically) or by directly 
stimulating the sensory and motor neurons of the pharynx and larynx. 
Most of the stimuli described as swallow sensory stimulants (such as 
acid, capsaicin or piperine) are integrated by receptors of the multimodal 
transient receptor potential (TRP) channel family, mostly expressed 
in sensory nerves. Enhancing the sensorial stimuli may increase 
the sensorial input to the swallowing centre of the brain stem, thus 
triggering the swallow response earlier and protecting the respiratory 
airway. Moreover, sensorial stimuli may promote brain plasticity, 
facilitating the recovery of deglutition. The aim of this review is to 
briefly summarize the effects of swallow therapies focused on sensory 
stimulation and discuss their effects, rationality, action mechanism and 
perspectives in patients with neurogenic oropharyngeal dysphagia.
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INTRODUCTION
Treatments for oropharyngeal dysphagia (OD) have tended to focus 
on compensating the swallow dysfunction through the adoption 
of different postures and manoeuvres during swallowing and 
the modification of the bolus consistency. These treatments are 
widely accepted in clinical practice but evidence supporting their 
effectiveness in OD associated to aging or neurological diseases is 
limited, and patients and caregivers often have difficulties learning, 
teaching, managing and performing these strategies properly[1,2,3]. 
Diet modification such as the increase of fluids viscosity, has 
been more successful in reducing aspirations and penetrations[4] 
and in preventing aspiration pneumonia[5]. However, thickeners 
do not improve the physiology of the swallow response, and they 
may modify the palatability of some beverages[6] leading to poor 
compliance by patients. 
    In addition, behavioural strategies focused on exercise and swallow 
rehabilitation have been developed. These exercises aim to increase 
muscle strength and improve the motion of oropharyngeal structures, 
as well as favour central neuroplastic modifications[1,7].
    Finally, several authors tried to treat oropharyngeal dysphagia by 
increasing sensorial input in a variety of ways, such as chemically, 
physically or electrically. It is generally assumed that, under normal 
function, the swallowing centre receives strong afferent input 
suggesting the involvement of sensory feedback during swallowing, 
and that sensory input is crucial to the initiation and modulation 
of the swallow response. Sensorial deficits of the pharynx and 
larynx after stroke[8] or in the elderly[9] are very prevalent and 
associated with the presence of aspirations. The disruption of the 
sensory feedback in healthy volunteers by the application of topical 
anaesthesia in the oropharyngeal mucosa reduces the cortical 
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control of swallowing, leading to tracheobronquial aspiration[10,11]. 
The aim of this review is to summarize the effects of sensory 
stimulation on the swallow function of patients with dysphagia 
and discuss their rationality, action mechanisms and clinical 
perspectives.

METHODS
A literature search was performed on the PubMed electronic 
database. The search was limited to publications in English up to 
September 2013 and the terms deglutition disorders or oropharyngeal 
dysphagia or swallowing combined with sensory stimulation or 
sensory stimulus were used. A total of 200 articles were found. A 
manual search of cross-references was also performed. Studies done 
on healthy volunteers and animals were used to discuss the action 
mechanism and rationality of these therapies. Articles discussing 
oesophageal disorders, anatomic disorders or paediatric pathologies 
were excluded.

S E N S O R Y S T R A T E G I E S T E S T E D I N 
DYSPHAGIC PATIENTS
Several strategies have been tested as modulators of the swallow 
response, modifying the sensorial proprieties of the bolus (either 
chemically or physically) or directly stimulating the sensory and 
motor neurons of the pharynx and larynx. 

Chemical stimuli
Acid: Sour boluses (50% lemon juice) were one of the first 
strategies used to stimulate the swallow response in stroke and other 
neurological patients. Both groups of patients showed significantly 
improved onset of the oral swallow in response to sour boluses 
compared to non-sour boluses; stroke patients also exhibited reduced 
pharyngeal delay time, oral transit time and improved swallow 
efficiency, whereas the other neurological patients exhibited reduced 
aspiration[12]. Pelletier and Lawless[13] tested different concentrations 
of citric acid (2.7% and 1.11% w/v) and sucrose (8%) mixture in 
patients with neurological disorders and concluded that the highest 
concentration of citric acid (2.7%) significantly improved swallowing 
by reducing the rate of aspiration and penetration whereas sweet–
sour mixture did not significantly improve swallowing behaviours. 
The combination of cold and sour taste produces distinct changes 
in swallowing physiology: reduced volume per second and smaller 
capacity (volume taken) per swallow[14], reduced oral transit time[15] 
and reduced pharyngeal transit time in ischemic hemispheric stroke 
patients[16,17].
Pungency: Pungent ingredients, such as capsaicin (Capsicum sp) or 
piperine (Piper nigrum), have also been tested in dysphagic patients to 
evaluate their therapeutic effect. Acute administration of capsaicin (10-

8-10-6 M) reduced the latency of swallow reflex (time from 1 mL of 
distilled water instillation into the pharynx to the onset of swallowing)
[18]. Moreover, daily administration (10-6 M) also shortened the 
latency of swallow in elderly patients with dysphagia, particularly 
in older people at high risk of aspiration[19]. In a group of patients 
with dysphagia associated with aging, neurodegenerative diseases 
or stroke, capsaicin boluses (1.5×10-4 M) reduced the prevalence of 
penetrations into the laryngeal vestibule by shortening the laryngeal 
vestibule closure time and improving the hyoid movement[20]. 
Capsaicin boluses also reduced the prevalence of oropharyngeal 
residue by increasing the propulsion force[20]. In addition, 30 days 
of olfactory stimulation using black pepper oil also shortened the 

1067 © 2014 ACT. All rights reserved. 

latency of swallow in a group of post-stroke dysphagic patients[21]. 
The supplementation of the alimentary bolus with piperine (1.5× 
10-4 M and 1×10-3 M) also reduced the prevalence of penetrations by 
shortening the laryngeal vestibule closure time[22].
Menthol: menthol boluses (10 -4 M-10 -2 M) given to 14 
institutionalized elderly patients with dysphagia had a concentration-
dependent effect on triggering the swallowing reflex (shortening the 
latency time)[23].
Carbonation: The use of carbonated liquids (citric acid/ sodium 
bicarbonate) has also been tested as a treatment strategy for 
dysphagic patients. It has been reported that carbonated thin liquids 
reduced prevalence of penetrations and aspirations, pharyngeal transit 
time and pharyngeal retention when compared with still liquids[24,25]. 

Mechanical stimuli
Tactile-thermal stimulation of the anterior faucial pillars is a 
traditional method to treat patients with neurogenic dysphagia, but 
evidence is scarce. Pommerenke[26] studied tactile stimuli at several 
places in the oral cavity and found that the faucial pillars were 
the most sensitive in triggering swallowing. Kaatzke-McDonald 
et al[27] showed that the combination of tactile with cold stimuli 
induced swallowing more efficiently, suggesting the existence of 
thermal receptors in the faucial pillars. Lazzara et al observed that 
stimulation improved triggering of the swallowing reflex in 23 
out of 25 neurologically-impaired patients after a single-session 
treatment. However, Rosenbek found inconsistent results in his 
studies with dysphagic stroke patients[28,29,30] after 2 weeks of tactile-
thermal application. Regan et al[31] reported significant improvement 
of swallowing motor function in patients with Parkinson’s disease, 
showing that tactile-thermal stimulation of faucial pillars reduced 
the pharyngeal transit time, total transit time and pharyngeal delay 
time compared with no stimulation. Mechanical stimulation of the 
faucial pillars alone, without thermal stimuli, did not show significant 
changes in swallowing parameters in healthy volunteers[32,27]. Air-
pulses have also been used to mechanically stimulate the oropharynx 
in individuals with dysphagia after a hemispheric stroke in a 
pilot study, showing increased resting swallowing rates in some 
individuals after bilateral application[33].

Thermal stimuli
Temperature changes combined with other sensory stimuli (such 
as acid or touch) have been described as a therapeutic strategy for 
dysphagic patients. Changing bolus temperature alone has also been 
tested in dysphagic patients, showing that temperatures above (60-80 
℃) and below (10-20℃) body temperature, accelerated the onset of 
swallow response in elderly patients with aspiration pneumonia[34].
 
Electrical stimuli
Intrapharyngeal electrical stimulation: the application of electrical 
stimuli on the pharynx of acute post-stroke dysphagic patients, using 
intra-pharyngeal electrodes (5 Hz, 10 min), showed a significant 
reduction in the pharyngeal transit time, swallowing response time 
and prevalence of aspirations[35]. These effects were associated 
with a marked increase in pharyngeal corticobulbar excitability and 
topographic representation in the undamaged hemisphere. A 3-day 
treatment (10 min/day, 5 Hz) improved airway protection compared 
with controls, reduced aspirations, improved feeding status and 
resulted in a shorter time to hospital discharge 2 weeks after the 
intervention[36].
Transcutaneous electrical stimulation: Transcutaneous electrical 
stimulation is used to activate muscles involved in swallowing 
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function through stimulation of peripheral motor nerves 
(neuromuscular electrical stimulation, NMES)[37]. However, their 
effectiveness and safety in the treatment of dysphagia is still under 
discussion[38,39] and studies evaluating NMES therapy present 
inconsistent results[40,41,42,43]. Transcutaneous electrical stimulation 
has also been used as a sensory strategy, avoiding muscle contraction 
during the treatment[44,42]. This stimulation strategy has shown 
significant improvement in several swallow parameters, such as 
reduced swallow response time and prevalence of aspirations in 
chronic post-stroke dysphagic patients[44,42] but not in dysphagic 
patients with Parkinson’s disease[43].

PERIPHERAL TARGETS FOR SENSORY 
STIMULATION
Up to three sensory systems, olfaction, taste, and somatosensation, 
are involved in the detection of chemicals in food. Signalling of taste 
involves the activation of receptors located in the taste buds. Salts 
and acids utilize apically located ion channels for transduction, while 
bitter, sweet and umami (glutamate) stimuli utilize G-protein coupled 
receptors and second messenger signalling mechanisms. The receptor 
cells for smell are modified sensory neurons located in the upper part 
of the nasal passages. In addition, some chemical agents can activate 
ionotropic receptors of the trigeminal, glosspharyngeal and vagal 
nerves, leading to changes in ionic permeability and depolarization of 
sensory neurons. The ability of chemical substances to evoke sensory 
responses is known as chemesthesis. These fibres, specifically the 
maxillary branch of trigeminal nerve, pharyngeal branch of the 
glossopharyngeal nerve (GPNph) and two branches of the vagus 
nerve, the pharyngeal branch (Xph) and the superior laryngeal nerve 
(SLN), innervate the most sensitive areas to trigger the oropharyngeal 
swallow response, such as the palatopharyngeal arch, the edge of the 
soft palate in the pharyngeal region, the edge of the epiglottis and the 
aryepiglottic fold[45]. 
    These afferents project to supra-medullar structures and to the 
swallowing centre in the brainstem and express several receptors of 
the multimodal transient receptor potential (TRP) channels, which 
integrate most of the stimuli described as swallow sensory stimulants:

Chemical stimuli
Acid: Acidic solutions activate and sensitize the trigeminal, the GPN 
and the SLN. Studies in rats showed that facilitation of swallowing 
by sour bolus (5 mM-30 mM of acetic acid or citric acid) may be 
due to increases in sensory inputs via the SLN and GPNph[46]. The 
stimulatory effect of H+ on sensory neurons is essentially mediated by 
Transient Receptor Potential Vanilloid 1 (TRPV1) and Acid-Sensing 
Ion Channels (ASICs). TRPV1 have six transmembrane segments 
(TM) which form a pore permeable to Ca2+. pH< 6 leads to the pore 
aperture as H+ ions act in the extracellular domain, particularly in the 
Glu-648, Val- 538 and Thr-633, while for pH 6-7, H+ act in the Glu-
600, which does not cause the opening of the channel, but facilitates 
it to agonists such as capsaicin and heat[47,48]. In addition, ASICs 
expressed in sensory neurons respond to minor acidosis and lead to 
fast and rapidly inactivating inward Na+ currents[49].
Pungency: It is well known that pungent compounds such as 
capsaicin and piperine exert their action mainly through TRPV1[50], 
although piperine can also activate the transient receptor potential 
anakrin 1 (TRPA1)[51]. TRPV1 expression has been found in nerve 
fibres in the subepithelial tissue of the human and rat epiglottis[52,53,54], 
in fibres surrounding the taste papillae in the anterior tongue[55] and in 
the trigeminal nerve[56]. 

    TRPV1 stimulation by these agonists might therefore increase 
the sensory input to the brainstem and cortical areas, facilitating 
deglutition, as will be discussed later. In addition, the release of 
substance P (SP) and other neuropeptides by the sensory afferents 
on the oropharynx and larynx may exert a local effect. SP widely co-
localizes with TRPV1 on C and Aδ fibre terminals and is released by 
the action of the TRPV1 agonists. Tachykinins like SP phosphorylate 
TRPV1 via PKC and sensitize the receptor[57]. Thus, either through 
direct action of SP and other neuropeptides on sensory nerve 
terminals or through the action of pro-inflammatory substances 
released due to the action of these neuropeptides, the release of SP 
into the larynx can produce sensitization of primary sensory neurons 
which facilitates the motor swallow response. SP may also play a 
major role in the cough reflex, another important protective reflex of 
the airways. One-month intervention using black pepper oil olfactory 
stimulation, increased serum SP levels compared with the period 
before the treatment[22]. In contrast, 7-fold lower SP concentrations 
were found in older patients with aspiration pneumonia (21.2±2.4 
fmol/mL) compared to elderly controls (142.2±8.4 fmol/mL, 
p<0.001)[58]. 
Menthol: Menthol is a transient receptor potential melastatin 8 
(TRPM8) agonist[59,60]. TRPM8 is a cold-sensing TRP channel 
expressed in several populations of sensory nerves such as trigeminal 
ganglions and nerve fibres in the tongue[61]. Although TRPM8’s 
expression on the human pharynx and larynx is still unknown, its 
activation can also facilitate the swallow response, increasing the 
sensory input to the brain stem swallowing centre.
Carbonation: The carbon dioxide dissolved in water in carbonated 
liquids diffuses into cells and produces intracellular acidification, 
which could gate TRPA1 channels[62]. In the periphery, TRPA1 
is expressed in a subset of nerve fibres in the human pharyngeal 
epithelium[63]. The stimulation of TRPA1 by carbonated beverages 
may be responsible for the increase in sensory input to the brainstem 
and supramedular areas, facilitating deglutition. Moreover, activation 
of mechanoreceptors by the CO2 bubbles, a mechanical mechanism, 
can also be involved in the chemestesis induced by CO2.

Mechanical stimuli
Alteration in peripheral receptor characteristics and changes in the 
swallow centre following the application of a stimulus have been 
proposed as possible neurophysiological mechanisms responsible for 
the improvements in swallow response observed after tactile-thermal 
stimulation[32]. Several receptors (either ionotropic or metabotropic) 
might be activated by a mechanical stimulus, leading to changes 
in ion permeability of the sensory afferents which can elicit an 
action potential. It has been reported that TRPA1 contributes to the 
mechanosensory function in visceral afferent endings[64]. Although 
its involvement in the response to tactile stimulation has not been 
explored, it might be responsible for the conduction, at least in part, 
of this therapeutic strategy which is normally applied together with 
cold stimuli, also conducted through the TRPA1. However, the 
application of mechanical stimuli alone does not seem enough to 
produce any significant change in swallow function[32,27], at least in 
healthy volunteers.

Thermal stimuli
Several members of the TRP family have been described as thermo-
channels and are expressed in primary sensory nerve terminals where 
they provide information about thermal changes in the environment. 
TRPV1-4 are activated by elevated temperatures ranging from warm 
(TRPV3 and TRPV4) to more extreme heat (TRPV1 and TRPV2), 
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whereas TRPM8 and TRPA1 are activated respectively by moderate 
to noxious cold[65]. Therefore, the application of a thermal stimulus to 
the oropharynx can be integrated by these receptors, increasing the 
sensory input to the brainstem and cortical areas.

Electrical stimuli
Several animal studies and clinical studies in humans have shown 
that the application of an electrical stimulus to the SLN elicits 
swallowing. The electrical stimulation of GPNph plays the major role 
in the initiation of swallowing from the pharynx, GPNli electrical 
stimulation inhibits swallowing and Xph is not associated with the 
initiation of swallowing[45]. Dependent-voltage channels of these 
sensory neurons might be activated by means of sensory electrical 
stimulation (either intrapharyngeal or transcutaneous), and the input 
signal conducted to superior areas. 

CENTRAL ACTION MECHANISM OF 
SENSORY STIMULATION
Even though the pharyngeal phase of swallowing has been often 
described as a reflex response, several studies show that it can be 
modulated by cortical and sensory inputs. The magnification of the 
sensorial stimuli may increase the sensorial input to the swallowing 
centre of the brain stem, leading to earlier threshold achievement 
in initiating deglutition thus protecting the respiratory system. 
Moreover, sensorial stimuli may reorganize the motor cortex, 
facilitating deglutition.

Brainstem
The brainstem swallowing centre, also referred as central pattern 
generator, is located in the medulla oblongata. This swallowing centre 
is formed by two groups of interneurons: the dorsal swallowing 
group (DSG), located in the spinal cord within the nucleus tractus 
solitaire (NTS), and ventral swallowing group (VSG), located in 
the ventrolateral medulla just above the nucleus ambiguus. The 
synaptic response of the interneurons of the DSG occur with a very 
short, stable latency of 1 to 2 ms, indicating that at least some of 
these neurons are monosynaptically connected to afferent fibres in 
the oropharynx. With regard to VSG neurons, several pulses are 
generally required to initiate the synaptic spike, the latency of which 
is visibly longer (7-12 ms) and variable, suggesting the existence 
of a polysynaptic pathway. Interestingly, a synaptic response can 
also be initiated in oropharyngeal neurons by stimulating a specific 
cortical area which induces swallowing, with a latency shorter in the 
DSG (5-8 ms) than in the VSG neurons (10-16 ms). These results 
suggest that the neurons of the VSG are probably activated via 
neurons of the DSG, and that the DSG interneurons are responsible 
for generating the pattern of swallow response when achieved the 
threshold to initiate deglutition, while VSG neurons are responsible 
for distributing the response to the different motor nuclei. The DSG 
neurons receive convergent information from both cortical and 
peripheral inputs to trigger the swallow response[66]. It should be 
noted that simultaneous stimulation of SLN and GPNph, decreased 
the latency of swallowing more than stimulating each nerve 
independently, suggesting that the combination of spatiotemporal 
primary sensory signals might also enhance and strengthen the 
swallow response[67]. Changes in the pattern or frequency of 
peripheral sensory input might lead to changes in the NTS neurons, 
such as the excitability of neurons and the traffic and release of 
neurochemicals, which could contribute to modifying the swallow 
response[68]. Most synapses, including those in the NTS, are subject 

to changes in synaptic efficacy and output due to the influence of the 
presynaptic input. Although neuroplasticity phenomena in the NTS 
related to swallowing stimulants have not been studied specifically, 
the NTS possesses a remarkable degree of plasticity in response to a 
variety of stimuli, both acute and chronic[69], that could be involved 
in the changes in the swallowing behaviour observed after sensory 
stimulation.

Supramedular areas
Although swallowing control is mainly mediated by brain stem 
mechanisms, the cerebral cortex also plays a fundamental role 
in the initiation and regulation of the swallow response. Several 
clinical reports from stroke patients have indicated that cortical 
damage causes swallowing dysfunction[70]. Moreover, changes in 
the activity of several cortical areas during swallowing have been 
reported by means of neuroimaging studies and the effect of sensory 
stimulation of the oropharynx on cortical function and excitability 
has been investigated by several authors. It has been reported that 
sour boluses increase cortical activation in the swallowing neural 
network (sensory-motor cortex, insula, cingulated gyrus, prefrontal 
cortex, precuneus, supplementary motor area) compared to saliva 
and water swallows[71,72]. Ebihara et al[21] found that 30 days of 
olfactory stimulation with black pepper increased the cerebral blood 
flow in the right orbitofrontal and left insular cortex in older people 
with swallowing dysfunction and resulted in improved swallowing. 
Carbonated solutions have been shown to increase cortical 
excitability of pharyngeal projections in healthy volunteers[73]. Tactile-
thermal stimulation, another sensory strategy, has also reported a 
significantly increased bilateral cortical activation after stimulation 
compared with swallows before stimulation[74] in healthy volunteers, 
but has not been correlated with changes in swallowing physiology. 
Hamdy and colleagues have carried out a series of studies focused 
on the effect of intrapharyngeal sensory electrical stimulation, and 
found that pharyngeal stimulation is associated with an increase 
in the pharyngeal motor cortical representation and a decrease in 
the esophageal representation[75]. fMRI studies have shown that, 
after one hour of pharyngeal electrical stimulation, the activation 
of the swallow-related area was increased[35] in healthy subjects. 
In dysphagic stroke patients, a marked increase in pharyngeal 
corticobulbar excitability and topographic representation occurred 
in the undamaged hemisphere compared to the affected hemisphere 
after pharyngeal stimulation[35]. Two weeks of treatment with 
transcutaneous electrical stimulation was related to long-term cortical 
reorganization and swallowing improvement in eight patients with 
brain damage[41]. However, Gallas et al[44] failed to detect changes 
in the cortical representation following transcutaneous electrical 
stimulation associated with swallowing improvement. 

CONCLUSION  
This review explores the effects of several sensory stimulation 
modalities used on patients with neurogenic oropharyngeal dysphagia 
and proposes both peripheral and central action mechanisms for these 
therapies.  
    Chemical strategies (acidity, pungency, menthol and carbonation) 
have shown positive effects, improving different swallow parameters 
of dysphagic patients, although there are few experimental studies. 
Randomized controlled trials exploring larger populations, the long-
term effects, as well as the impact on the clinical outcome of patients 
are needed. Interestingly, most of the proposed chemical swallow 
stimulants are agonists of different members of the TRP family. The 
relationship between TRP and dysphagia opens a new and fascinating 
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pathway to develop pharmacologic strategies for dysphagia treatment, 
although much more research is needed in this field. Central effects 
of chemical stimulants are practically unexplored and there is very 
little data on the effects of these chemicals in terms of neuroplasticity. 
The main mechanical stimulus used in the treatment of dysphagia 
is tactile-thermal stimulation of the faucial pillars but, despite its 
widespread clinical use, there is little supporting evidence. Results 
in healthy volunteers indicate that the application of a mechanical 
stimulus alone or the combination of a mechanical and a thermal (cold) 
stimulus in the faucial pillars are not enough to modify swallowing 
physiology, although changes in cortical excitability were found. 
However, some studies done on dysphagic patients reported positive 
results. There are a several possible explanations for the discrepant 
findings. First, the variety of protocols used in the different studies 
that can lead to discrepant results. Second, the metal probes normally 
used in tactile-thermal stimulation rapidly increase their temperature 
once removed from the ice, which can reduce the effect. Finally, the 
use of healthy volunteers without delayed swallow response could 
mask any change in swallow physiology. In addition, we hypothesize 
that the stimulation of the IX cranial nerve alone (which innervates 
the faucial pillars) is not enough to facilitate swallow and the 
stimulation of IX and SLN simultaneously is necessary to facilitate 
the response. 
    The effect of changing bolus temperature has also been explored 
in dysphagic patients although only one study explored the effect of 
a wide range of temperatures on the swallow response of dysphagic 
patients. The thermal stimuli, like the chemical stimuli are mainly 
conducted by the TRP channels, but little is known about its central 
action mechanism. 
    Finally, electrical stimulation of the pharynx provides the 
most relevant evidence that sensory stimulation induces cortical 
neuroplasticity associated with an improvement in the swallow 
function. It should be noted that in electrical stimulation, as well 
as in other sensory strategies, frequency, intensity and duration of 
the stimulus seem to be critical for the final effect, ranging from 
inhibition to facilitation. 
    In conclusion, sensory stimulation has become an important 
emerging therapeutic strategy for dysphagic patients; however, 
much more research is needed to move from experimental to clinical 
practice.
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