
INTRODUCTION
Since Rudbeck first described the existence of cardiopulmonary 
lymphatic vessels in 1653[1], research progress into the relationship 
between cardiopulmonary function and mediastinal lymph flow, has 
been hampered because of scarcity of relevant technology, and the 
important effect of mediastinal lymph flow is largely overlooked in 
most textbooks. Undoubtedly, the research progresses in this field 
critically rely on the techniques about cardiopulmonary functional 
analysis, animal models, and imaging system. Recent progresses in 
lymphatic vascular biology provide a new way to further explore the 
effect of mediastinal lymph flow[2]. 
    In conventional point of view, lymphatic vascular system mediates 
tissue fluid homeostasis by providing an important route for fluid and 
protein transport, and plays a complementary role to the blood vessels 
in fluid reabsorption and tissue perfusion. The blood vessels deliver 
oxygen and nutrients, and carry away waste products for detoxification 
and replenishment; while the lymphatic vessels return the protein-
rich exuded fluid to the bloodstream[3]. According to this conventional 
point of view, the consequence of lymph flow impairment merely 
refers to tissue edema other than specific tissue or organ injury. 
    Different from conventional view about lymph flow impairment 
which may cause tissue edema to a varying extent, mediastinal lymph 
flow impairment can bring a fatal result. For instance, the patients 
with superior vena cava syndrome may succumb within one month if 
the obstruction of superior vena cava is unable to be relieved[4]. The 
fatal condition of superior vena cava syndrome is mostly attributable 
to the cardiopulmonary dysfunction caused by mediastinal lymph 
flow impairment (MLFI), rather than less increased intracranial 
pressure. The current review searched entire areas of cardiac 
lymphatics and lymph flow, pulmonary lymphatics and lymph flow, 
and the effect of MLFI. 

CARDIAC LYMPHATIC VESSELS AND 
LYMPH FLOW
Generally, there are two methods for imaging lymphatic vessels, one 
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ABSTRACT
The important effect of mediastinal lymph flow has been overlooked 
in most textbooks for over three centuries, and recent progresses in 
lymphatic vascular biology provide a new way to discover the effect 
of mediastinal lymph flow impairment. Different from conventional 
view about lymph flow impairment, which merely refers to tissue 
edema other than specific tissue or organ injury, mediastinal lymph 
flow impairment can bring a fatal consequence. Mediastinal lymph 
flow impairment may cause cardiopulmonary dysfunction by 
interrupting both the cardiac contraction manner of cardiomyocytes 
“asynchronized” contraction and pulmonary perivascular lymphatic 
remodeling. 
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the heart. He hypothesized that during diastole, the pressure of 
the blood in the ventricles drives lymph from the sub-endocardial 
lymphatic vessels into the mid-myocardial lymphatic vessels. 
During systole, the contraction of the mid-myocardium forces the 
lymph from the mid-myocardial lymphatic vessels into the sub-
epicardial lymphatic vessels; eventually, the pressure of the dilated 
heart against the pericardium towards the end of diastole drives the 
lymph from the sub-epicardial lymphatics into the main lymphatic 
trunk leaving the heart[22]. In his hypothesis, the pericardium plays 
a key role in draining lymph fluid from the heart. However, there is 
no evidence showing that severe lymphedema can be induced in the 
heart after pericardium removal in either animal studies or human 
heart surgeries. On the other hand, it is important to know that if 
there is any force from the heart against the pericardium, the heart 
dilation is inevitable. Likewise, pericardium removal does not cause 
heart dilation at all. Therefore, it is reasonable to speculate that the 
force driving lymph flow through the sub-epicardial lymphatics does 
not come from cardiac dilation against the pericardium, and this 
situation produced a new concept of cardiac contraction manner of 
cardiomyocytes “asynchronized” contraction, proposed by Cui[23,24].
    In Cui’s hypothesis, the driving force for cardiac lymph flow 
mainly comes from powerful sub-epicardial muscular contractions, 
and the lymph flow efficiency through the sub-epicardial lymphatic 
vessels depends on the power of cardiomyocytes “asynchronized” 
contraction. It is hypothesized that the three parts of the cardiac 
muscles, ie, sub-endocardium, mid-myocardium, and sub-epicardium, 
are not committed to the same contraction simultaneously for 
efficient blood ejection and cardiac lymph flow. For example, 
during systole, the powerful contraction of the sub-endocardium and 
mid-myocardium contributes to blood ejection; however the sub-
epicardium remains relaxed and is not committed to contraction 
simultaneously in order to collect lymph fluid from the layer of the 
mid-myocardium. During diastole, the sub-epicardium is committed 
to contraction to generate the driving force of lymph flow through 
squeezing the sub-epicardial lymphatic vessels and pumping cardiac 
lymph fluids from the heart. Although this contraction manner 
of the heart has been termed as cardiomyocytes “asynchronized” 
contraction, the terminology of cardiomyocytes “synchronized” 
contraction also has been used by Cui[23], because cardiomyocytes 
“asynchronized” contraction is precisely regulated in physiological 
condition.

SELF-PROTECTIVE MECHANISM OF HEART
Cardiomyocytes “asynchronized” contraction provides an important 
mechanism for blood perfusion into the cardiac walls. During 
systole, the blood enter into the layer of sub-epicardium due to its 
relaxation, and during diastole, the blood shall be squeezed into the 
layer of endocardium by the force of the sub-epicardial contraction. 
Therefore, it is the manner of cardiomyocytes “asynchronized” 
contraction rather than coronary artery pressure that shall play a 
key role in blood perfusion into the cardiac walls. As a matter of 
fact, a high level of coronary artery pressure is not required for 
blood perfusion into the heart in the condition of cardiomyocytes 
“asynchronized” contraction. This point of view is in part supported 
by the experimental findings that coronary blood flow does not 
change along with the increased coronary artery pressure, and remains 
a steady state in a wide range of coronary artery pressure[25,26]. Based 
on the manner of cardiomyocytes “asynchronized” contraction, the 
systolic myocardial volume is larger than the diastolic myocardial 
volume, and the value of the blood perfusion into the heart is equal to 

is direct dye injection and another is lymphatic specific molecular 
imaging[5]. However, direct dye injection method is only suitable 
for imaging “non-contracting” lymphatic vessels, and lymphatic 
specific molecular imaging method can be used for imaging both 
“contracting” and “non-contracting” lymphatic vessels. Using the dye 
injection technique, it was found that cardiac lymphatic vessels exist 
in various sites of the heart including the sub-endocardium, mid-
myocardium, and sub-epicardium, and also in the atrioventricular 
and semilunar valves in the mammalian heart. The cardiac lymphatic 
vessels exist in two forms comprising the lymphatic capillary plexus 
and the collecting lymphatic vessel. The lymphatic capillary plexus 
is seen in the mid-myocardium and sub-endocardium with the sub-
endocardial lymphatic capillary plexus lying parallel to the surface of 
the endocardium. The collecting lymphatic vessels can be seen in the 
sub-epicardium; they unite into single or multiple lymphatic trunks 
and subsequently proceed to the mediastinal lymphatic vessels which 
include the right lymphatic duct and the thoracic duct[6-15]. Eventually, 
mediastinal lymphatic vessels merge into the subclavicular vein 
completing the lymph flow circulation. Intravascular valves are 
present in the lymphatic vessels of both cardiac collecting lymphatic 
vessels and the cardiac lymphatic capillary plexus except for the part 
of the sub-endocardial plexus that drains the longitudinal muscle 
columns of the left ventricle. Intravascular valves maintain lymph 
flow in one direction and are most numerous in the sub-epicardial 
collecting lymphatic vessels. 
    With regard to the cardiac lymph outflow pathway, it is known 
that cardiac lymph fluid may travel through both the right lymphatic 
duct and the thoracic duct before merging into the blood circulation. 
However, it still needs to be clarified whether the predominant 
cardiac lymph outflow pathway is the right lymphatic duct or the 
thoracic duct, although studies found that the connection between the 
right or left cardiac lymphatic trunk and the arch of the thoracic duct 
was present. Cardiac lymphatic trunks were rarely connected with the 
thoracic duct within the mediastinum, and connections with the arch 
of the thoracic duct were usually reached through the left anterior 
mediastinal lymph node chain. The left anterior mediastinal lymph 
node chain was often reached by the right efferent cardiac lymphatic 
trunk draining lymph fluid from the right ventricle at the level of the 
origin of the internal thoracic artery on the left thymus gland, while 
a left recurrent chain originating from the left superior bronchial 
nodes joined with the thoracic duct at the arch level. There was also 
a connection between the left superior bronchial nodes and the right 
paratracheal nodes. Interestingly, the right paratracheal nodes were 
always the first nodes joined by the left efferent cardiac lymphatic 
trunk draining the left ventricle. Studies showed that the efferent 
lymphatic vessels from the right paratracheal nodes merge mainly 
into the right lymphatic duct[16,17].
    In terms of lymph flow, it is well accepted that both the active 
lymphatic pumping and passive lymphatic pumping exist in 
lymphatic vascular system, and that the active lymphatic pumping 
is generated by the active spontaneous contraction of lymphangions 
while the passive lymphatic pumping is not[18-20]. Because of a 
relatively low pulsatile rate of the active spontaneous contraction of 
lymphangions and limited capacity to drain large amount of lymph 
fluid[21], the active lymphatic pumping is not considered to play 
any role in propelling cardiac lymph flow. Apparently, the passive 
lymphatic pumping plays a major role in the cardiac lymph flow. 
However, the key point and debate exist in the pathway how the 
passive lymphatic pumping works.
    For near ninety years, a theory proposed by Kampmeier was 
widely cited to explain how the passive pumping is generated within 
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the difference between the systolic and diastolic myocardial volume 
(at this point, the volume of lymph fluid can be omissible because of 
small quantity). In addition to the above blood perfusion mechanism, 
the manner of cardiomyocytes “asynchronized” contraction provides 
an important mechanism of preventing heart from dilation, due to 
the sub-epicardial contraction during diastole. If all the myocardium 
contracts or relaxes simultaneously, the heart will dilate eventually 
because of repeated mechanical force towards ventricular walls 
from blood filling into the ventricles during diastole. A good 
cardiac performance requires good blood perfusion into ventricles 
and avoiding cardiac dilation, and the manner of cardiomyocytes 
“asynchronized” contraction wonderfully fulfills these prerequisites.

ELECTROPHYSIOLOGICAL STUDIES OF 
CARDIOMYOCYTES
From the electrophysiological point of view, cardiomyocytes 
“asynchronized” contraction may indicate that QRS wave represents 
depolarization of sub-endocardium and mid-myocardium, while T 
wave in electrocardiogram probably represents re-depolarization 
of sub-epicardium during the course of sufficiently prolonged 
epicardial repolarization[24]. It is generally accepted that there 
exist heterogeneity of action potential duration among different 
cardiomyocytes, ie, sub-endocardial myocytes, mid-myocytes, and 
sub-epicardial myocytes[27]. Interestingly, there is a notch pattern in 
sub-epicardial myocytes[28,29], and this notch pattern probably causes 
sufficient prolongation of repolarization in sub-epicardial myocytes 
by coupling with mid-myocytes. During the course of the sufficiently 
prolonged repolarization in sub-epicardium, the re-depolarization of 
sub-epicardium may occur from the nadir of this notch and form T 
wave; the nadir level of this notch may vary (high or low level) in 
different conditions, and its abnormality may also induce arrhythmia. 
In summary, the interruption of the manner of cardiomyocytes 
“asynchronized” contraction may cause serious arrhythmia including 
ventricular tachycardia, and cardiac lymphedema may interrupt the 
manner of cardiomyocytes “asynchronized” contraction. Although 
there is evidence to indicate the possibility of this hypothesis, more 
studies need to be done to fully support this hypothesis. For over one 
hundred years, the nature of T wave is incompletely understood and 
serious debate continues[30-32].
    In terms of cardiac arrhythmia, it has been proposed that lymph 
drainage from the atria may encounter much stronger resistance 
than that from the ventricles because of the weaker sub-epicardial 
muscular contraction in the atria compared with the ventricles. Given 
the existence of high resistance in mediastinal lymph flow, lymph 
fluid retention is more likely to occur in the atria, often inducing 
supraventricular arrhythmias[24]. This speculation is in part supported 
by clinical investigation[33,34].
    Therefore, a high resistance in the mediastinal lymphatic vascular 
system might be an important factor inducing supraventricular and 
other arrhythmias, and thus, relieving resistance in the mediastinal 
lymphatic vascular system could become one of major targets for the 
prevention and treatment of cardiac arrhythmias in the future. The 
mechanism of high resistance in the mediastinal lymphatic vascular 
system remains unknown, and is presumably related to multiple factors 
including gravitational influences[35], congenital abnormalities of the 
lymphatic vessels, acquired mediastinal lymphadenopathy, and so on.

CARDIAC INJURY BY MLFI
Studies have shown that acute MLFI in animal models may cause 
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severe sub-epicardial lymphedema with blistering of the epicardial 
surface, and scattered foci of sub-endocardial hemorrhage[36,37]. 
While chronic MLFI in animal models may cause sub-endocardial 
hemorrhage in early stage, and decrease myocardial contractility and 
stroke volume. In addition, the ratio of dp/dt (maximal rate of increase 
of left ventricutar pressure) to IP (pressure at the moment of maximal 
dp/dt) decreased after MLFI[11,38-43]. Evidence also demonstrated 
that serum glutamic-oxaloacetic acid transaminase activity rose and 
electrocardiograms showed abnormalities after MLFI[44].
    The above phenomena are interesting experimental findings 
which coincide with the manner of cardiomyocytes “asynchronized” 
contraction. In early stage of MLFI, lymphedema occurred in the 
layer of sub-epicardium. In order to drain lymph fluid out of the 
heart, the sub-epicardium had a reflex increase in the power of sub-
epicardial contraction during diastole. And the excessive power of 
sub-epicardium blowed up blood vessels of sub-endocardium, and 
sub-endocardial hemorrhage occurred. However, chronic edema 
status interrupted the manner of cardiomyocytes “asynchronized” 
contraction, and weakened the cardiac contractility and decreased the 
stroke volume. 

PULMONARY LYMPHATIC VESSELS AND 
LYMPH FLOW 
There are two pulmomary lymphatic vascular systems, the subpleural 
and deep, that connect through the interlobular septa. Early 
investigators debated the origin of the deep lymphatic vessels, and 
electron microscopy has demonstrated a terminal and respiratory 
bronchiole origin[1,45-50]. However, Cui’s studies clearly showed 
that the deep lymphatic vessels mainly exist in the space around 
pulmonary blood vessels (so the deep lymphatic vessels also called 
perivascular lymphatic vessels in Cui’s terminology). In Cui’s 
animal studies, blocking mediastinal lymph flow may cause lymph 
accumulation in the perivascular space other than elsewhere (as 
shown in Figure 1 and Figure 2). This is a very interesting finding for 
studying the mechanism of pulmonary blood vessel injury[51]. 
    The pulmonary lymphatic vessels usually do not extend into 
the interalveolar septa. Pulmonary lymphatics eventually coalesce 
into large mediastinal lymphatic ducts, such as the right lymphatic 
duct and the thoracic duct. There has been some debate about the 
relative importance of the right lymphatic duct and thoracic ducts in 
pulmonary lymph drainage. Studies demonstrated that the fraction 
of lung lymph draining into the thoracic duct and right lymphatic 
duct can vary greatly among animals, however, on average, the right 
lymphatic duct and thoracic duct receive about equal fractions of the 
pulmonary lymph[52-55].
    Pulmonary lymph flow originates mainly from perimicrovascular 
interstitial liquid. It is generally believed that lymph flow is 
determined mainly by the rate of microvascular filtration, and by 
the amount of fluid that has accumulated. Many factors promote 
pulmonary lymph flow, including the elevation of the left atrial 
pressure, increased bronchial arterial perfusion, hemodilution, 
increased cardiac output, and so on. In contrast, lymph flow may 
decline with the elevation of lymphatic outflow pressure; the effective 
resistance of the extrapulmonary part of the lymphatic system was 
larger than the resistance of the lymphatics in the lungs, and it may 
limit the maximal flow of lymph from edematous lungs[56-66].

PERIVASCULAR LYMPHATIC REMODELING
In Cui’s studies as mentioned above[23,24,51], the majority of lymphatic 
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vessels exists around perivascular space rather than elsewhere in the 
lungs, and always proceeds along with pulmonary blood vessels. 
In physiological condition, the volume of lymph fluid around 
perivascular space is limited, the number of perivascular lymphatic 
vessels is numerous, and many of the perivascular lymphatic vessels 
maintain “collapsed” condition; while as the volume of lymph 
fluid increasing in the perivascular space, the lymphatic vessels 
around perivascular space undergo remodeling. The fashion of the 
perivascular lymphatic remodeling, is that various lymphatic vessels 
expand and lymphatic vascular walls coalesce with each other to 
form very limited number of lymphatic trunk(s), that lymphatic 
vascular permeability decreases dramatically to an extent that 
lymphatic trunk(s) enwrap the perivascular lymph fluid completely, 
and that perivascular lymphatic trunk(s) prevent blood vessel wall 
from direct contacting “toxic components” contained in the lymph 
fluids. Subsequently, as the volume of lymph fluids decreasing, the 
lymphatic trunk(s) change back into numerous lymphatic vessels 
with high lymphatic vascular permeability. This is an important 
mechanism for body to protect pulmonary blood vessels from injury. 
    However, the capability of perivascular lymphatic remodeling 
is probably limited by the lymph volume accumulated in the 
perivascular space, and/or by both the number and function of the 
perivascular lymphatic vessels. Failure of perivascular lymphatic 
remodeling may cause blood vessel injury (as shown in Figure 3). 
In Cui’s studies, the failure of perivascular lymphatic remodeling 
occurred in the part of the lungs, not in the fashion of “all or none” of 
the entire lungs.

PULMONARY INJURY BY MLFI
In a rabbit model, Cui demonstrated that MLFI for 4 hours caused 
severe lymph fluid accumulation in the perivascular space in some 
segments of the lungs, and the lymph fluid is distributed along with 
pulmonary blood vessel sheath from small blood vessels to large 
blood vessels. There is no lymph fluid accumulation elsewhere. 
MLFI for 4 hours did not induce entire lung edema, but it may not 
exclude the possibility of pulmonary edema in a long-term MLFI. 
On the other hand, MLFI caused blood vessel endothelial injury in 
which histological examination showed endothelial cells bulged and 
vacuolized in some segments of the lungs, which is considered as the 
results of the failure of perivascular lymphatic remodeling in these 
segments[51].
    In addition, MLFI for 4 hours caused a 4 ± 1 mmHg rise in 
pulmonary artery pressure, which is considered as the results of 
both perivascular lymph fluid accumulation and endothelial injury. 
Perivascular lymph fluid accumulation increased pulmonary vascular 
resistance and lowered vascular compliance. Therefore, MLFI may 
contribute to the occurrence of pulmonary hypertension[51]. 

THE EFFECT OF IMPROVING MEDIASTINAL 
LYMPH FLOW 
Studies showed that improving mediastinal lymph flow may bring 
benefits to the heart and lungs. For example, in an animal model 
of myocardial ischemia or ischemia/ reperfusion, studies showed 
the beneficial effect of hyaluronidase on preventing cardiac injury 
by enhancing cardiac lymph flow. Also, in an animal model of 
myocardial infarction, studies showed that cardiac lymph flow 
decreased shortly after occlusion of the left anterior descending artery 
and cardiac lymphatic filling decreased in the infarct zone of the 
heart. However, hyaluronidase and CLS 2210 (a benzenesulfonate 

Figure 1 Pulmonary blood vessels showing perivascular lymphedema in a 
rabbit model, hematoxylin and eosin (H and E) × 16.

Figure 2 Short arrows showing perivascular lymphedema, long arrows 
showing that there is no edema around bronchioles and bronchus in a 
rabbit model. H and E × 32.

Figure 3 Short arrows showing the normal part of the blood vessel, long 
arrows showing endothelial injury with edematous adventitia in a rabbit 
model. H and E × 80.

derivative) were found to prevent lymphatic occlusion and collapse, 
and significantly reduced the extent of myocardial injury from arterial 
occlusion[67-70]. 

CONCLUSIONS
Mediastinal lymph flow impairment may cause cardiopulmonary 
dysfunction by the mechanism of interrupting both the cardiac 
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contraction manner of cardiomyocytes “asynchronized” contraction 
and pulmonary perivascular lymphatic remodeling. And both the 
cardiac contraction manner of cardiomyocytes “asynchronized” 
contraction and pulmonary perivascular lymphatic remodeling, play 
a key role in maintaining normal cardiopulmonary function. On the 
other hand, establishing functional lymphangiogenesis for improving 
mediastinal lymph flow is a hot research area[71].
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