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ABSTRACT
HLA cell-surface glycoprotein molecules act in the very beginning of 
the allergic sensitization process, making them natural candidates for 
research on the genetic susceptibility for respiratory allergies. Thus, 
along past decades, this topic has been subject to some research and, 
consequently, several HLA alleles have been implicated in respiratory 
allergic diseases development. Current editorial introduces, revise, 
summarize, and comment the major advances in the role of HLA 
genes for the development of, and protection against, respiratory 
allergic disease. A general picture is drawn and new challenges on the 
field are relocated, especially those that might enlighten respiratory 
allergies aetiology and, thus, contribute in advances for diagnosis and 
treatment.
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INTRODUCTION
Respiratory allergic diseases could be defined as allergic conditions 
with respiratory manifestations affecting upper or lower respiratory 
tract, or both. It occurs after the exposure of predisposed individuals 
to certain allergens, resulting in an exaggerated inflammatory 
response mediated by immunoglobulin E (IgE) antibodies[1]. The 
respiratory symptoms of such immune system overreaction result, 
mostly, in allergic rhinitis or allergic asthma, or both, and place, 
presently, a considerable burden on both developed and developing 
societies, as also on patients and their families[2]. In fact, respiratory 
allergies are the most common allergies, and rhinitis and asthma 
affects up to 700 million people worldwide, with a dramatic 
increasing prevalence along the past decades[3]. Of particular concern 
is their prevalence among children, since, in such cases, the prognosis 
tends to be of a chronic and aggravated disease, making respiratory 
allergies the most common chronic diseases among adolescents and 
young adults[4,5,6].
    Respiratory allergic diseases have been shown to be interrelated 
in the so called ‘atopic march’, beginning with atopic dermatitis and 
evolving to allergic rhinitis and/or asthma along childhood[7]. Indeed, 
about 66% of children with atopic dermatitis develop symptoms of 
allergic rhinitis, and 30% became asthmatic[8]. Also, more than two 
thirds of asthmatic patients show allergic rhinitis and, on the other 
hand, about one third of allergic rhinitis patients are also affected by 
asthma[9]. However, despite all the evidences that join asthma and 
allergic rhinitis in the concept ‘one airway one disease’, questions 
remain on if they are part of the same disease process or if they are 
distinct entities that have their own specific causes[10,11].
    The specific causes that lead to respiratory allergies still are 
in study but it is evident that it results from a complex interplay 
between genetic factors and environmental exposure. The heritability 
of asthma, evaluated through several twin studies, shows to be 
high, with genetic factors accounting for around two thirds of the 
susceptibility. Nevertheless, despite the strong evidences of a genetic 
determination for atopy, there is not clear that specific allergies, 
such to house dust mite or grass pollen, are strongly determined by 
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the non-classical class I group. With 51 alleles found worldwide, 
HLA-G locus expresses 17 distinct functional proteins and, due 
to alternative splicing, can assume membrane-bound and soluble 
isoforms (IMGT/HLA Database, release 3.22.0, 2015-10-10)[31]. Its 
functions are oriented towards immune inhibition and tolerance and 
one of its most known implications is on the prevention of maternal-
foetal rejection[32]. Cells from placenta migrate into the maternal 
uterus and produce both membrane and soluble HLA-G isoforms, 
which will inhibit maternal immune response against foetal foreign 
antigens through interaction with inhibitory receptors in maternal 
leukocytes, establishing an immune privilege[30]. This mechanism 
of inhibition and tolerance mediated by HLA-G has revealed to be 
involved in tumour escape from the immune system and, in fact, 
a higher expression has been significantly correlated with poor 
prognosis in patients with solid tumours[33,34,35].
    The alpha and beta chains expressed by the classical class II 
genes (HLA-DPA, -DPB, -DQA, -DQB, -DRA and -DRB) associate 
each other non-covalently to compose heterodimer transmembranar 
molecules on the surface of a restricted set of cells that interact with 
CD4+ T-helper cells, predominantly antigen-presenting cells (APC) 
such as macrophages, dendritic cells and B lymphocytes[36]. Both 
alpha and beta chains contribute to form the HLA class II peptide 
binding groove and peptides presented by it on the cell surface of 
APC result from internalized and processed exogenous antigens that 
could derive from cell surface proteins, soluble proteins or proteins 
from a virus, bacteria or protozoa invaders[37]. When CD4+ T-helper 
cells become activated, after recognizing a foreign peptide presented 
within the antigen binding groove of a class II molecule, they 
differentiate and secrete cytokines which influence the proliferation, 
function and differentiation of other immune cells, including other 
T cells, B cells and macrophages, triggering an adaptive immune 
response against foreign elements[38]. The non-classical class II 
proteins, HLA-DM and -DO, lack the ability to bind peptides but 
both molecules play a critical role in the HLA classical class II ability 
to functionally bind self and non-self peptides on APC, controlling 
the very first steps of an immune response[39]. 
    Despite with non-HLA genes, some of the MHC class III loci act 
as critical mediators of the immune response. Examples of such loci 
are complement components C2, CFB, C4B and C4A, that code for 
plasma proteins that act against pathogens and induce inflammatory 
responses[40], TNF, an important multifunctional proinflammatory 
agent that triggers a cascade of inflammatory mediators[41], and 3 Heat 
Shock Protein genes (HSPA1L, HSPA1A and HSPA1B) that act as 
danger-signalling molecules to the innate immune system, showing a 
regulatory role, namely on natural killer cell response to cancer[42,43].

HLA, IMMUNITY, AND RESPIRATORY 
ALLERGIES 
Respiratory allergies, as any other allergies, result from a deregulated 
action of the immune system that starts with the sensitisation to 
harmless substances from the environment, in a process that involves 
both innate and adaptive immunity. HLA cell-surface glycoprotein 
molecules act in the very beginning of this sensitization process, 
presenting the allergens to T lymphocytes and triggering an immune 
response. When the organism contacts for the first time with a 
foreign substance, namely through inhalation, ingestion or epithelium 
contact, a sensitization mechanism is started with the APCs, namely 
Dendritic Cells (DC), internalizing those molecules and presenting 
them on the cell surface attached to the binding groove of the HLA 
class II molecules (HLA-DR, HLA-DQ and HLA-DP)[44]. Presenting 

inheritance[12]. Thus, despite with conflicting results, several studies 
identified and evaluated hundreds of candidate-genes for respiratory 
allergic diseases susceptibility and, among those, several genetic 
markers were confirmed as been positively associated[13,14].

THE HLA LOCI
Since the Human Leukocyte Antigen (HLA) region, also known as 
the human Major Histocompatibility Complex (MHC), harbours a 
polymorphic set of membrane receptors coding genes that, in the 
context of the immune system action, distinguish ‘self’ from ‘non-
self’, it is not surprising that several alleles and haplotypes of those 
loci have been associated to a wide series of different types of 
allergies, namely those with respiratory outcomes[15,16]. Located in 
the short arm of chromosome 6 (6p21.3), the HLA region constitutes 
an intricate and interrelated cluster of genes along approximately 4 
megabases, involving more than 300 loci, from which at least 160 are 
functional genes[17,18]. These functional genes are considered the most 
polymorphic of the human genome and about 40% of them have an 
important role in the regulation and action of the immune system[19,20]. 
Three main regions have been identified in the human MHC, 
accordingly to the structure and function of its genes: class I, class 
II and class III. The most telomeric region of the human MHC hosts 
the HLA class I genes, which includes 3 high polymorphic, known 
as classical (HLA-A, HLA-B and HLA-C) and 3 low polymorphic, 
known as non-classical (HLA-E, HLA-F and HLA-G), besides a 
dozen of HLA pseudogenes and one HLA non-coding gene[21]. On 
the other hand, HLA class II are located on the most centromeric 
region of the human MHC, consisting of alpha and beta chain genes, 
the classical HLA-DPA, -DPB, -DQA, –DQB, -DRA and –DRB, and 
also the non-classical HLA-DMA, –DMB, -DOA and –DOB, besides 
some pseudogenes and non-HLA genes[21]. Located between class I 
and class II, the class III region of the MHC has no known HLA like 
genes but is the most gene-dense region in the human genome[22]. The 
loci that constitute this region are responsible for expressing proteins 
with an important role on modulating and regulating immune 
response[23].
    Classical HLA class I genes (HLA-A, HLA-B and HLA-C) 
express cell-surface glycoprotein molecules on almost all nucleated 
cells, playing an important role in “self” and “non-self” immune 
recognition. These molecules display at cell surface small protein 
fragments almost originated in the cytosol. Their interaction with 
inhibitory or activating receptors from the surface of Natural 
Killer (NK) or cytotoxic CD8+ T-cells modulates the lytic activity. 
As a result, when a cell expresses foreign proteins, due to a viral 
infection, or shows a different expression pattern, due to an 
oncogenesis process, HLA class I signals those changes through 
its own binding to the resulting peptides and, after recognition by 
NK or CD8+ T cells, an immune response is triggered[24,25,26]. This 
same immune mechanism is responsible for allograft rejection when 
HLA compatibility between donor and recipient is missing[27]. Non-
classical class I loci (HLA-E, HLA-F and HLA-G) are best known for 
their participation on the regulation of the innate immunity but they 
can also play a role in regulating adaptive responses. HLA-E, -F and 
–G co-express in the placenta trophoblast cells and several studies 
have shown a poor prognosis associated to their higher expression 
in different types of malignant tumours, facts that emphasize their 
role in immune modulation and protection against NK lysis[28,29]. In 
opposition to the ubiquitous expression of classical class I, these non-
classical loci tend to be conditional and tissue or organ specific[30]. 
HLA-G is the better studied locus and the most polymorphic among 
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are best known on their ability to present antigens originated from 
the cytosol, namely associated to infection or tumour escape, but 
they could also bind to exogenous substances in a process named as 
‘cross-presentation’ or ‘cross-priming’, and thus be also implicated 
in sensitization or, after, in allergic exacerbation through a CD8+ 
T cell cytotoxic response[62,63]. Despite most peptides presented by 
classical HLA class I are thought to be derived from the breakdown 
of cytosolic proteins in the proteasome, and then actively transported 
into the ER via the transporter associated with antigen processing 
(TAP) molecular complex, where it is loaded to the peptide binding 
groove, in ‘cross-presentation’ antigens may follow alternative 
TAP dependent routes[64,65,66]. Despite under investigation, present 
knowledge suggests that the intake of extracellular antigens to load 
in APC MHC class I could depend on different factors, such as the 
type of antigen, the signaling mechanisms and the receptors involved 
as mediators in endosome internalization[67]. Thus, DC cross-present 
external antigens through MHC class I, that could be an allergen, 
leading to CD8+ T cell activation and a cytotoxic response. The 
CD8+ T-cell activation and expansion in allergic sensitization and 
airway inflammation resembles the well-known pattern for viral 
defense in which a pool of memory CD8+ T cells persists and could 
be reactivated after repetitive antigen encounters[66,68].
    However, the role of HLA molecules in respiratory allergies is 
not just about presenting antigens/allergens to T cells through APC. 
For example, soluble HLA-G (sHLA-G) has immunosuppressive 
properties and could participate in the mechanisms of allergens 
immunotolerance through their ability to inhibit T-cell proliferation 
and induce T and NK CD8+ cells apoptosis[69,70]. Soluble HLA-G 
inhibits human dendritic cell-triggered allogeneic T-cell proliferation 
without altering dendritic differentiation and maturation processes[69].

HLA AND THE RESPIRATORY ALLERGIC 
DISEASE SUSCEPTIBILITY
Since a wide spectrum of respiratory allergic diseases has been 
associated with several genetic markers located in the HLA region, 
we selected, to summarize, analyse and exemplify this topic, 
those with a better-established relationship. Thus, allergic rhinitis, 
allergic asthma, aspirin exacerbated respiratory disease, allergic 
bronchopulmonary aspergillosis, and food allergies with respiratory 
outcomes were selected to approach and analyse the role of HLA loci 
in respiratory allergic diseases, the aim of this editorial.

1. Allergic rhinitis
Allergic rhinitis (AR) affects the nose and is induced after exposure 
to allergens in sensitized individuals. As other allergies, it is a IgE- 
mediated reaction and a symptomatic disorder that, in this case, 
results in watery rhinorrhoea, sneezing, nasal obstruction and itching. 
Its two main categories include “intermittent” and “persistent” AR, 
the former more dependent on the pollen seasonal exposition and the 
latter to the all year around indoor allergens, such as house dust mites, 
cockroaches, or fungi[71]. AR is increasing all over the world and 
becoming a burden for the society as well a quality of life loss factor, 
with important restrictions to daily life. AR is estimated to affect 
more than 500 million people all over the world, with 60 million only 
in the United States, a prevalence similar to Europe, ranging from 
10% to 20% in adults but much higher in children[72,73,74].
    The linkage between AR and HLA markers has long been 
established[75], specially through alleles belonging to HLA class II 
loci, such as DRB1*09: 01, DQB1*03: 03 and DPB1*04: 01 in 
Japanese subjects allergic to house dust mite (HDM)[76,77,78,79]. This 
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allergen peptides by DC, or other APC, depends both on the 
expression of the HLA class II and on the allergen processing through 
the endocytic pathway[45]. HLA class II genes expression is activated 
by CIITA (MHC II transactivator), a MHC master regulator molecule 
coded in the chromosome 16, and, after synthesis, is translocated 
into the endoplasmic reticulum (ER)[46]. In the ER, HLA class II α 
and β chains are assembled together with an ‘invariant chain’ (Ii), a 
specialized chaperone that provides a scaffold for the assembly and 
that blocks the peptide binding groove with a CLIP domain (class 
II-associated Ii peptide) to avoid premature peptide binding[45,47,48]. 
Later, after transportation across Golgi complex into the endocytic 
pathway, Ii is partially removed, leaving the CLIP domain in the 
peptide-binding groove of the HLA molecule[49]. Thus, allergens 
internalized and processed in APC through the endocytic pathway 
happens to be together with CLIP-HLA class II complexes inside the 
endosomes, allowing the exchange of CLIP by antigen peptides, a 
process intermediated by the non-classical HLA class II molecules, 
HLA-DM and HLA-DO[50]. HLA class II molecules loaded with the 
allergen peptides are transported to the cell membrane of the APC 
and, after migration in to the lymph node, presented to naïve CD4+ 
T lymphocytes in a cell to cell contact involving T-cell receptors 
(TCR). In the presence of Interleukin-4 (IL-4), naïve T lymphocytes 
differentiate into T helper type 2 cells (Th2), with subsequent clonal 
expansion and production of a specific cytokine profile, namely IL-
4, IL-5 and IL-13[51]. Through cell contact interaction and cytokine 
stimulation, especially IL-4, Th2 induce B cell to switch from their 
naïve state, of expressing cell surface Immunoglobulin D (IgD) or 
IgM, to express IgE antibodies with affinity to the specific antigen 
(allergen). Yet, this immunoglobulin class switching should only 
occurs if that same allergen was also internalized by the B cell 
and exhibited at cell surface in the binding groove of a HLA class 
II molecule. B cell switched to IgE proliferates through clonal 
expansion, produce antibodies, and becomes memory cells (as also 
happens with Th2 cells), leading to sensitization[52,53].
    IgE antibodies produced by B lymphocytes in the sensitization 
phase becomes attached on mast cells (or other cell types as 
eosinophils) surface to their IgE high-affinity receptor, Fcε receptor 
I (FcεRI)[54]. In a subsequent exposure to the same allergen, the 
antigens bind to IgE antibodies in the membrane of mast cells 
and triggers their degranulation, releasing a diverse group of 
biologically active products, namely histamine and cytokines, that 
induce an immediate hypersensitivity reaction which, if localized 
in the airways, could result in reduced airflow and wheezing[55,56]. 
Additionally, allergens processed by APC are presented through 
HLA class II at cell surface and activate Th2 memory cells, which 
proliferate and produce cytokines that stimulate B memory cells to 
proliferate and secrete IgE specific antibodies. Th2 cell cytokines and 
IgE from B cells activate cells of the innate immune system, namely 
mast cells that will degranulate in contact with the antigen and 
maintain the allergy into a late phase[57,58,59].
    In opposition to the above described Th2 cell differentiation, 
that lead to IgE B cell switching and degranulation of mast cells, 
when a Th1 response is activated no allergic reactions occurs. Th1 
polarization also results from MHC class II antigen presentation 
through APC and seems to be driven by the type of antigen 
experience and cytokine stimulation[60]. In such cases, Th1 cells 
produce a different profile of cytokines, such as IL-2, IFN-γ and 
TNF-β, which will not switch B cells to IgE but, instead, to IgG. A 
Th1 response, in opposition to Th2 that is humoral, will result in a 
cell-mediated immunity[61].
    Classical MHC class I molecules (HLA-A, HLA-B and HLA-C) 
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linkage between HLA class II and AR has shown to be dependent 
on the allergen involved in the reaction since, for example, despite 
DRB1*01 is strongly associated to the mugwort (Artemisia vulgaris) 
pollen allergen ‘Art v 1’[80], when the allergen is the ‘Amb a 5’ 
from the short ragweed (Ambrosia artemisiifolia) the DRB1*15 
shows the strongest association[81], as well as DRB1*12: 01 for 
‘Cry j1’ and Cry j2’ allergens from the Japanese cedar (Cryptomeria 
japonica[79]. Besides this specificity with the allergen, HLA conferring 
susceptibility to AR also vary between populations. For example, 
HLA-DRB1*08: 03 and HLA-DQB1*06: 01 are associated with a 
higher risk of HDM-sensitive allergic rhinitis in Chinese subjects[82] 
but in Japanese the alleles associated are DRB1*09: 01 and 
DQB1*03: 03[79]. On the other hand, several HLA class II alleles 
have been associated to a protective effect against AR, such as 
DQA1*02: 01, DQB1*06: 02, DRB1*03: 01 and DRB4*01: 01 for 
Artemisia pollen-induced allergic rhinitis in Chinese population[83,84] 
or DRB1*04: 11 for HDM induced AR in Brazilians[85].
    Most recently, evidences show that soluble HLA-G (sHLA-G) 
isoforms serum levels, as well as sHLA-A, -B, -C, are significantly 
increased in AR patients, and that sHLA-G might be considered 
as a biomarker for assessing AR clinical severity[86,87,88]. Moreover, 
allergen-specific sublingual immunotherapy (SLIT), that aims 
to achieve clinical tolerance to the causal allergen through oral 
administration of high-dose allergens by shifting Th2 immune 
response, reduces sHLA-G and sHLA-A, -B, -C serum levels 
in patients with AR[89]. Presently, the role of HLA-G in AR, 
and in allergic diseases in general, is not clear but, since it is a 
tolerance-inducing molecule, the most plausible hypothesis is that 
it is expressed and secreted by immune cells during the allergic 
reaction and may represent a reactive attempt to suppress allergic 
inflammation[90].

2. Allergic asthma
Allergic asthma is a chronic inflammatory disease of the airways 
caused by a complex interaction between genetic susceptibility 
and environmental factors in which exposure to certain allergens 
cause intermittent attacks of breathlessness, airway hyper-reactivity, 
wheezing, and coughing[91,92]. An estimate of about 334 million 
people worldwide are affected with asthma, being the allergic, by far, 
the most predominant form of the disease, making it a huge burden 
for the society[93].
    As said before, genetic factors are determinant on the development 
of allergic asthma and HLA class II loci are among the most 
relevant and consistent. In fact, despite a genetically heterogeneous 
disease that could be influenced by more than 100 loci located in 
different chromosomes, such as 2, 5, 9, 15, 17 or 22, HLA-DQ 
was the first locus to be identified as conferring susceptibility to 
asthma[94,95,96]. Among HLA class II, DQB1 and DRB1 have been 
showing the strongest associations with asthma[96,97,98,99]. Examples 
of these associations are the DRB1*01 and DQB1*05: 01 with 
susceptibility to Artemisia vulgaris allergic asthma in patients from 
Murcia-Spain[98], the DRB1*07 with susceptibility to citrus red 
mite (Panonychus citri) sensitive asthma in Koreans and DRB1*04 
conferring protection[99], the DRB1*13 with susceptibility to mite-
sensitive asthma in Taiwanese[100] or the haplotype HLA-DRB1*11: 
01-DQA1*05: 01-DQB1*03: 01 conferring susceptibility to 
develop mite-sensitive asthma in Venezuelans[101]. However, these 
associations between HLA class II and asthma vary widely between 
populations. A study with Iranians shows that DRB1*12, DQB1*06: 
03 and DQB1*06: 04 may predispose to childhood allergic asthma 
and DQB1*05: 01 and DQB1*06: 02 to protection[102] but in an 

Indian pediatric population only DRB1*03 was implicated in 
susceptibility[103], a result somehow consistence with Croatian 
children with atopic asthma that showed positive correlation with 
DRB1*01 and DRB1*03 and negative correlation with DRB1*16[104]. 
Among Chinese, two studies show different results, one suggesting 
that DQA1*01: 04 and DQB1*02: 01 alleles were implicated in 
susceptibility, with DQA1*03: 01 and DQB1*03: 01 alleles being 
protective[105], and the other identifying DQA1*01: 01, DQA1*06: 
01, DQB1*03: 03 and DQB1*06: 01 as susceptible alleles to asthma 
development[106]. Other loci from HLA class II region have also 
been associated to asthma, as HLA-DRB4 with severe persistent 
asthma[107] or HLA-DPA1*02: 01 and DPB1*09: 01 with pediatric 
asthma in Asian populations[108].
    Besides class II, HLA class I loci, such as HLA-B*08 conferring 
risk in Croatian children[104] or HLA-C*07 as a protective marker 
in Venezuelans[101], also have been associated to allergic asthma. 
However, among HLA class I, it has been the non-classical HLA-G 
who has shown a higher consistency in the association with allergic 
asthma[95,109]. The increased levels of soluble HLA-G (sHLA-G) 
in the circulating plasma of children with atopic asthma[110,111] and 
in bronchoalveolar lavage from adults[112], or the expression of a 
specific soluble isoform of HLA-G, the sHLA-G5, in the airway 
epithelial cells[110], are important evidences of this association. A 
single nucleotide polymorphism (SNP), the rs1063320 (+3142G>C), 
present within the 3’ untranslated region (UTR) of the HLA-G, has 
been associated with asthma in children of mothers with asthma, 
being the +3142C a risk allele and +3142G protective[113]. Further 
studies had shown that the +3142C allele disrupts the targeting of 
specific microRNAs (miR-152 family) preventing the transcripts 
to be down-regulated and, as so, leading to a higher HLA-G 
expression[114]. Additionally, adult asthmatic with an asthmatic mother 
were also shown to have higher levels of sHLA-G in brochoalveolar 
lavage fluid when the +3142C allele is present, supporting the idea 
that the pathogenesis of the disease may be different among offspring 
depending on the asthmatic status of the mother and that HLA-G play 
an important role in it[124].

3. Aspirin exacerbated respiratory disease
Aspirin exacerbated respiratory disease (AERD), considered 
a pseudoallergic pathology since it is not IgE-mediated, is 
characterized by nasal polyposis, asthma and hypersensitivity to 
medication that inhibits cyclooxygenase-1 enzymes, namely aspirin 
and other nonsteroidal anti-inflammatory drugs[116]. Both upper 
and lower respiratory reactions occur in AERD, including rhinitis, 
conjunctivitis, laryngospasm and bronchospasm, and, despite its 
prevalence is less than 1% in general population, it could represent 
up to 20% of asthmatics[116,117].
    One of the best genetic markers for AERD is HLA-DPB1*03: 
01. Dekker et al (1997) found in a study with 59 Polish patients 
that HLA-DPB1*03: 01 is associated to risk and DPB1*04: 01 to 
protection against the disease[118]. Later, Choi et al (2004) confirmed 
the susceptibility of DPB1*03: 01 in a Korean population and 
suggests also a possible involvement of DRB1*09: 01-associated 
haplotypes[119]. Simultaneously, Park et al (2004) adds that 
HLA-DPB1*03: 01 marker might predict a higher leukotriene 
receptor antagonist dose to control asthmatic symptoms in AERD 
patients[120]. Most recently, a genome-wide association study in a 
Korean population confirmed the importance of HLA-DPB1 in the 
genetic aetiology of AERD and identified in this locus that the SNP 
rs1042151 (Met105Val) is the most significantly associated with 
susceptibility to the disease, showing also a gene dose association 
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with the percent decline of FEV1 (forced expiratory volume in 
one second) after an aspirin challenge[121]. Soon after, Kim et al 
(2014), also with Korean patients, validated another DPB1 SNP as 
a genetic marker to predict the AERD phenotype, the rs3128965, 
which was also associated with the percent decline of FEV1 after 
an aspirin challenge and with the requirement for steroid and 
leukotriene receptor antagonists therapeutic[122]. A recent study 
suggests that HLA-DQB1*03: 02 and HLA-DRB1*04, and their 
related haplotypes, are involved in predisposing patients to AERD, 
whereas HLA-DQB1*03: 01 and HLA-DRB1*11 have a negative 
association[123]. Also, HLA-DQB1*03: 02 was identified as a genetic 
marker for favourable response to aspirin desensitization among 
AERD patients[124].

4. Allergic bronchopulmonary aspergillosis
Allergic bronchopulmonary aspergillosis (ABPA) results from 
allergic reactions to fungus from the Aspergillus genus, usually 
the A. fumigatus specie, leading to lung inflammation and 
causing bronchospasm, coughing, breathing difficulty and airway 
obstruction[125]. Despite uncommon in general population, 2% to 
15% of cystic fibrosis patients and up to 6% of asthmatics could be 
affected with ABPA, being its early diagnose important since it is 
associated with asthma poorer outcomes[126,127].
    The presence of HLA-DRB1*15: 01 and HLA-DRB1*15: 03 
alleles confer relative high risk of developing ABPA, being the alleles 
DRB1*15: 02 and DQB1*02: 01 protective markers[128,129,130]. When 
considering ABPA patients with cystic fibrosis, as was done in a study 
with patients recruited in Murcia- Spain, the correlation between 
HLA-DQB1*02: 01 allele and its protective effects is maintained 
as well as DRB1*15: 01 for risk, together with HLA-DRB1*11: 04, 
DRB1*11: 01, -DRB1*04 and -DRB1*07: 01 alleles[131].

5. Food allergies with respiratory outcomes
Food allergy, mediated by IgE antibodies, is an immunological 
reaction to particular components of a diet and, among other 
symptoms, could result in respiratory outcomes, such as runny nose, 
coughing, wheezing, swelling of the throat and breathlessness[132]. 
Based on numerous studies, the prevalence of food allergy could 
affect around 5% of adults and 8% of children, and is increasing year 
after year[133]. Despite allergies could arise from any kind of food, in 
more than 85% of cases food allergies result from milk, egg, peanut, 
tree nuts, shellfish, fish, wheat, sesame seed and soy[134].
    Besides environmental factors, and similarly to other allergies, 
food allergies are also determined by genetics and shows familial 
aggregation[135,136]. Among others, HLA loci have been associate to 
food allergies, namely those showing respiratory outcomes such 
as peanut, milk and eggs allergies[137]. A genome wide association 
study (GWAS) developed by Hong et al provide evidences that 
the HLA-DR and -DQ gene region group significant genetic risk 
for food allergies[138]. This study identified and replicated genetic 
variants significantly associated with peanut, milk, and eggs allergies, 
in the HLA-DR and -DQ gene region, tagged by rs7192 (a non-
synonymous SNP of the HLA-DRA gene) and rs9275596 (intergenic 
between the HLA-DQB1 and HLA-DQA2 genes). Authors refer that 
both SNPs are known to significantly affect DNA methylation in 
several nearby genes, namely HLA-DRB1 and HLA-DQB1, which, 
in turn, mediate the detected association to food allergy. Previously, 
peanut allergy risk association with HLA-DRB1*08 and HLA-
DQB1*04 were reported[139], as well as HLA-DQB1*06: 03 for risk 
and DQB1*02 as a protective factor[140], but others studies show no 
HLA association[141]. A recent study using a bioinformatic approach 

evaluated the binding affinities between digested fragments of food 
allergens and the HLA class II membrane receptors[142]. This study 
found that peptides generated from milk allergens bind to DRB1 *01: 
01, DQ7 (DQA1*05: 01/DQB1*03: 01) and DQ8 (DQA1*03: 01/
DQB1*03: 02), but not to DRB1*03: 01, DRB1*04: 04, DRB1*12: 
01 and DRB1*15: 01. The peptides generated from egg allergens 
bind to DRB1*01: 01, DQ4 (DQA1*04: 01/DQB1*04: 02), DQ7 
and DQ8, but not to DRB1*03: 01, DRB1*04: 04 and DRB1*12: 
01. Thus, in this study, the alleles DRB1*01: 01, DQ7 and DQ8 
were considered as susceptible to cow’s milk allergy and DRB1*03: 
01, DRB1*04: 04, DRB1*12: 01 and DRB1*15: 01 as protective. 
The alleles DRB1*01: 01, DQ4, DQ7 and DQ8 are considered as 
susceptible to egg allergy and DRB1*03: 01, DRB1*04: 04 and 
DRB1*12: 01 as protective.

CONCLUSION 
Allergies occurs after the exposure of predisposed individuals to 
certain allergens, resulting in an exaggerated inflammatory response 
mediated by IgE antibodies, a reaction that could affect upper or 
lower respiratory tract, or both[1]. In fact, allergies with respiratory 
manifestations are the most common allergies, with rhinitis and 
asthma affecting up to 700 million people worldwide, with a dramatic 
increasing prevalence along the past decades[3]. The considerable 
burden placed by respiratory allergies on present society, with 
particular concern in their prevalence among children, ask us for a 
higher research effort in order to better understand its aetiology[2]. 
Nevertheless, it is already established that respiratory allergic 
diseases follow a common pathway, the so called ‘atopic march’, that 
starts with atopic dermatitis and could continue across allergic rhinitis 
into asthma[7,8]. Additionally, it is already evident that, despite the 
important influence of environmental factors, genetics play a major 
role, making respiratory allergies the result of a complex interplay 
between genetic factors and environmental exposure[12].
    Among the hundreds of candidate-genes that have been evaluated 
for respiratory allergic diseases susceptibility, and regardless 
the conflicting results and the need for further studies, HLA loci 
occupy a central position. Considering its role in the context of the 
immune system action, particularly in distinguish ‘self’ from ‘non-
self’, the HLA loci association to respiratory allergic diseases is not 
surprising[15,16]. In fact, HLA cell-surface glycoproteins act in the 
very beginning of the sensitization process, presenting the allergens 
to T lymphocytes and triggering an immune response, making 
these molecules one of the main suspects on the allergies aetiology. 
Nevertheless, besides the association that has been identified between 
HLA and respiratory allergic diseases, little is known about the 
mechanisms that underpin it. Small and poorly defined samples are 
among the most common research handicaps that have made the 
enlightenment of the HLA and allergies relationship difficult. Some 
of these pathologies, despite being included in the same bulk, could 
be the consequence of different aetiologies, depending on the genetic 
or the environmental exposition in specific populations. Additionally, 
has have been demonstrated, HLA association seems to be depend 
on specific allergens that trigger the respiratory allergy and could 
vary accordingly to the population genetics. Thus, future research 
should be able to use well characterized samples, considering each of 
the different allergens that triggers the specific respiratory allergy in 
well genetically characterized populations. However, meeting these 
conditions will make it even more difficult to obtain sufficiently large 
samples, posing additional challenges on the research development.
    As seen, the specific HLA allele implications with protection or 
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susceptibility for respiratory allergic disease constitute a highly 
diverse set, varying accordingly with the allergen involved and, for 
the same disorders, between different human populations. On these 
HLA and respiratory allergic disease associations two different 
pictures seems to emerge: a directly implication of the HLA alleles 
or an association through a close linkage with other loci that may be 
the direct cause. In this unclear involvement of HLA loci, gene-gene 
and gene-environment interactions could be present, making even 
more difficult a comprehensible analysis of the results obtained on 
the studies. As that, each HLA association study needs to identify, 
characterize and discriminate better the specific conditions in which 
the disease appears and develops, since it can make all the difference 
in the sense of the obtained data.
    A new step forward on the HLA association with respiratory 
allergic disease demands for a much more careful approach in future 
studies. Besides the above considerations, HLA studies need to be 
done with DNA high resolution techniques and always assure four 
digits typing. However, high resolution data should be also analysed 
in the context of their serologic meaning, especially grouping 
antigens accordingly to their ability to interact with specific allergens. 
The need to enlarge the picture of possible mechanisms and pathways 
involved in the aetiology of the respiratory allergic disease requires 
the study of new DNA markers along the MHC region with particular 
emphasis on segments revealing linkage with the already identified 
genetic markers. Requiring additional efforts on research, given its 
enormous potential on the enlightenment of the respiratory allergic 
disease aetiology, is the HLA soluble forms, in particular sHLA-G.
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